我们希望从地理TIFF图像中提取信息来计算每个块的平均纬度和平均经度。已知的数据仅为图像本身,图像可以从以下地址下载:
http://eoimages.gsfc.nasa.gov/images/imagerecords/57000/57752/land_shallow_topo_2048.tif
我们可以使用以下Python代码打开该图像:
import gdal
geotiff = gdal.Open('land_shallow_topo_2048.tif')
colum_numbers, row_numbers, band_numbers = geotiff.RasterXSize, geotiff.RasterYSize, geotiff.RasterCount
print(colum_numbers, row_numbers, band_numbers)
程序输出结果为:
2048 1024 3
2、解决方案
为了从地理TIFF图像中计算纬度和经度,我们可以按照以下步骤操作:
- 首先,我们需要获取图像的地理变换信息。这可以使用以下代码完成:
gt = geotiff.GetGeoTransform()
- 使用地理变换信息,我们可以计算出图像的最小经度值(minx)、最大经度值(maxx)、最小纬度值(miny)和最大纬度值(maxy)。计算公式如下:
minx = gt[0]
miny = gt[3] + width*gt[4] + height*gt[5]
maxx = gt[0] + width*gt[1] + height*gt[2]
maxy = gt[3]
- 接下来的我们要计算像素的大小,使用以下公式:
latPxSz = (maxy - miny) / row_numbers
lonPxSz = (maxx - minx) / column_numbers
- 接下来,我们需要确定我们要划分的块的大小,这里假设块的大小是50 x 50像素。每个块的中心经纬度坐标可以通过以下公式计算得到:
boxCenterLat = (i + 0.5) * 50 * latPxSz + miny
boxCenterLon = (j + 0.5) * 50 * lonPxSz + minx
其中,i和j分别是块在行和列上的索引。
- 最后,我们可以将块的中心经纬度坐标和图像数据结合起来生成一个数据表,然后从表中计算每个块的平均纬度和平均经度。
以下是一个Python代码示例:
import gdal
import numpy as np
# 打开地理TIFF图像
geotiff