【python】代码简洁化(一)

文章介绍了Python中的一些简洁表达技巧,包括*args和**kwds在函数参数中的使用,三元表达式的语法,with-as语句的文件操作,列表推导式简化列表创建,匿名函数lambda的应用,以及yield和生成器在节省内存方面的优势。此外,还讨论了装饰器如何增强代码的复用性和功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理一些简洁性表达,以有效降低代码量

* 与 **

在函数中 *args,**kwds

*用于列表、元组、字典的解包

mylist = [1, 2, 3, 4]
print(mylist)
print(*mylist)

mytuple = ('a', 'b', 'c', 'd')
print(mytuple)
print(*mytuple)

mydict = dict(zip(mylist, mytuple))
print(mydict)
print(*mydict)

执行结果

[1, 2, 3, 4]
1 2 3 4
('a', 'b', 'c', 'd')
a b c d
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1 2 3 4

三元表达式

一个易于记忆的例子:

打球去吧 if 不下雨 else 去自习室
y = 5
print('y是一个负数' if y < 0 else 'y是一个非负数')
x = -1 if y < 0 else 1
print(x)

with-as暂时还不太理解

with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:

fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r')
try:
    contents = fp.readlines()
finally:
    fp.close()

用了 with-as

>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp:
	contents = fp.readlines()

列表推导式

也可用 map 函数写

mylist = list(range(5))
res = [i + 3 for i in mylist]
print(res)

匿名函数

仅在定义匿名函数的地方使用这个函数,是一种简化的写法 lambda *args: 函数操作
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。

x, y = 1, 2
print(lambda x, y: x + y)
# <function <lambda> at 0x000002124D04A020>
a = [1, 2, 3]
for item in map(lambda x: x * x, a):
    print(item, end=', ')

yield generator iterator

可进一步查阅相关资料
py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。
python内置了迭代函数 iter,用于生成迭代器,用法如下:

a = [1, 2, 3]
a_iter = iter(a)
print(a_iter)
# <list_iterator object at 0x000002101F654040>
for i in a_iter:
    print(i, end=', ')
# 1, 2, 3, 

yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:

def get_square(n):
    result = []
    for i in range(n):
        result.append(pow(i, 2))
    return result


print(get_square(5))
# [0, 1, 4, 9, 16]

但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:

def get_square(n):
    for i in range(n):
        yield (pow(i, 2))


a = get_square(5)
print(a)
# <generator object get_square at 0x000001B2DE5CACF0>
for i in a:
    print(i, end=', ')

# 0, 1, 4, 9, 16,

装饰器 这段代码非常好,复用性很强

假如我们需要定义很多个函数,在每个函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。

import time


def timer(func):
    def wrapper(*args, **kwds):
        t0 = time.time()
        func(*args, **kwds)
        t1 = time.time()
        print('耗时%0.3f' % (t1 - t0,))

    return wrapper



@timer
def do_something(delay):
    print('函数do_something开始')
    time.sleep(delay)
    print('函数do_something结束')

do_something(3)
# 函数do_something开始
# 函数do_something结束
# 耗时3.077
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值