整理一些简洁性表达,以有效降低代码量
文章目录
* 与 **
在函数中 *args,**kwds
*用于列表、元组、字典的解包
mylist = [1, 2, 3, 4]
print(mylist)
print(*mylist)
mytuple = ('a', 'b', 'c', 'd')
print(mytuple)
print(*mytuple)
mydict = dict(zip(mylist, mytuple))
print(mydict)
print(*mydict)
执行结果
[1, 2, 3, 4]
1 2 3 4
('a', 'b', 'c', 'd')
a b c d
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1 2 3 4
三元表达式
一个易于记忆的例子:
打球去吧 if 不下雨 else 去自习室
y = 5
print('y是一个负数' if y < 0 else 'y是一个非负数')
x = -1 if y < 0 else 1
print(x)
with-as
暂时还不太理解
with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:
fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r')
try:
contents = fp.readlines()
finally:
fp.close()
用了 with-as
>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp:
contents = fp.readlines()
列表推导式
也可用 map
函数写
mylist = list(range(5))
res = [i + 3 for i in mylist]
print(res)
匿名函数
仅在定义匿名函数的地方使用这个函数,是一种简化的写法 lambda *args: 函数操作
。
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。
x, y = 1, 2
print(lambda x, y: x + y)
# <function <lambda> at 0x000002124D04A020>
a = [1, 2, 3]
for item in map(lambda x: x * x, a):
print(item, end=', ')
yield generator iterator
可进一步查阅相关资料
py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。
python内置了迭代函数 iter,用于生成迭代器,用法如下:
a = [1, 2, 3]
a_iter = iter(a)
print(a_iter)
# <list_iterator object at 0x000002101F654040>
for i in a_iter:
print(i, end=', ')
# 1, 2, 3,
yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:
def get_square(n):
result = []
for i in range(n):
result.append(pow(i, 2))
return result
print(get_square(5))
# [0, 1, 4, 9, 16]
但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:
def get_square(n):
for i in range(n):
yield (pow(i, 2))
a = get_square(5)
print(a)
# <generator object get_square at 0x000001B2DE5CACF0>
for i in a:
print(i, end=', ')
# 0, 1, 4, 9, 16,
装饰器 这段代码非常好,复用性很强
假如我们需要定义很多个函数,在每个函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。
import time
def timer(func):
def wrapper(*args, **kwds):
t0 = time.time()
func(*args, **kwds)
t1 = time.time()
print('耗时%0.3f' % (t1 - t0,))
return wrapper
@timer
def do_something(delay):
print('函数do_something开始')
time.sleep(delay)
print('函数do_something结束')
do_something(3)
# 函数do_something开始
# 函数do_something结束
# 耗时3.077