基于Dify Agent构建智能客服:攻克知识库查询、多轮对话、安全鉴权与人机协同

公众号:dify实验室

众多资源分享:企业实战的dify  DSL案例文件、交流群、大模型token资源等。

核心思路:Agent为核心,知识库工具化,Chatflow编排

构建高效智能客服的关键在于以下三大支柱:

  • Agent作为智能大脑

    Dify Agent是系统的核心决策单元,负责理解用户意图,选择合适的工具,并生成回复。

  • 知识库查询工作流工具化

    将不同领域的知识库分别创建并发布为Dify工作流,再注册为Agent可调用的工具。这使得知识库管理独立优化,Agent则专注于调用与整合。

  • Chatflow进行宏观流程编排

    使用Chatflow设计整体用户交互流程,包括输入处理、意图判断、Agent调用、安全鉴权及转人工等环节。

    整体编排如下:

    图片

一、 关键配置步骤与实现

第一步:将知识库查询工作流发布为工具

首先,我们需要将分散的知识库资源转化为Agent能够理解和使用的“工具”。

  • 创建知识库查询工作流

    为每个独立知识库(如商品库、订单流程库)在Dify中创建专门的工作流。此工作流应包含接收查询、检索知识库、格式化结果等步骤。

  • 发布为API/工具

    将这些工作流发布,使其能被Agent作为工具调用。记录下每个工具的调用方式和参数。

    图片

第二步:配置核心Chatflow工作流

接下来,在Chatflow中编排各个组件,形成完整的客服逻辑:

1. 起始与用户信息捕获 (“开始”节点)

设定用户来源、用户名、用户凭证等输入变量,为后续的安全鉴权和个性化服务收集初始信息。

图片

2. 初步意图识别与Agent分派 (“LLM”意图识别 + “条件分支”)

通过轻量级“LLM”节点判断用户初步意图,再由“条件分支”将请求导向配置了不同知识库工具组合的特定Agent,或通用Agent。

图片

3. 核心Agent节点配置 (“Agent”节点)

这是系统的智能核心:

  • 指令 (Prompt)

    精心设计Agent指令,明确其角色、目标,以及最重要的——如何使用已发布的知识库工具(例如:“查询商品信息时,使用【商品知识库工具】”)。指令还需包含多轮对话记忆的引导和转人工判断逻辑。

  • 工具 (Tools)

    添加所有已发布的知识库查询工作流作为Agent的可用工具。

  • 上下文输入

    确保Agent输入包含“对话变量Conver_History”,以实现多轮对话记忆连贯性。

    图片

4. 对话历史的维护与应用 (“对话变量Conver_History”, “模板转换”, “变量赋值”)

创建“对话变量Conver_History”数组存储每轮对话。Agent回复后,通过“模板转换”和“变量赋值”节点更新此历史记录,为Agent提供完整的对话上下文。

图片

5. 敏感业务查询鉴权 (“HTTP请求 - 鉴权”, “条件分支”)

若Agent需调用涉及敏感数据的内部API(也可封装为工具),调用前必须通过“HTTP请求 - 鉴权”节点进行身份验证,并由“条件分支”根据结果决定后续操作,确保敏感业务查询的安全性。

6. AI与人工咨询的协同 (“条件分支”, “HTTP请求 - 上报对话记录”, “直接回复 - 转人工”)

当Agent判断需转人工时,“条件分支”捕获信号,“HTTP请求 - 上报对话记录”节点将完整的对话历史发送至人工客服系统,同时“直接回复 - 转人工”节点提示用户,实现AI与人工咨询的协同。

二、 解决的核心问题回顾

通过上述配置,基于Dify Agent的智能客服系统能够有效应对:

  • Agent知识库查询

    模块化、工具化的知识库使Agent能灵活调用,获取精准信息。

  • 多轮对话记忆连贯性

    通过维护和注入对话历史,Agent理解上下文,进行连贯对话。

  • 敏感业务查询鉴权

    强制身份验证,保障数据安全。

  • AI与人工咨询的协同

    在必要时,将包含完整上下文的对话顺畅转接给人工。

三、 未来可优化的方向

技术永无止境,我们可以从以下方面持续提升系统能力:

  • 提升Agent的工具选择与规划能力

  • 对知识库工具本身进行智能化升级

  • 探索Agent动态工具注册与发现机制。

  • 实现人机协同的深度融合,例如人工客服调用AI工具辅助工作。

结语

基于Dify Agent构建智能客服,并将知识库等核心能力工具化,再通过Chatflow进行流程编排,是一种强大且灵活的策略。它不仅解决了当前AI客服面临的诸多核心挑战,也为未来的功能扩展和智能化升级打下了坚实的基础。希望本文能为您在构建高效、智能的AI客服系统之路上提供有益的参考!

dify实验室

基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。

觉得好,请帮忙点赞、转发。关注我,获取Dify相关资源(DSL、token、交流群等)。

公众号回复 DSL  获取本文DSL文件。

回复  入群   获取入群二维码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值