25. 拉普拉斯正变换

拉普拉斯值得细说.

1. 单边拉普拉斯变换的定义

现实生活中,通常我们遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。这样,在 t < 0 t<0 t<0 时, f ( t ) = 0 f(t)=0 f(t)=0 .单边拉普拉斯变换定义为:

F ( s ) = ∫ 0 − ∞ f ( t ) e − s t   d t F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t \\ F(s)=0f(t)est dt
因为这里被积函数在积分上下限的定义域内是因果信号,由上一篇 的介绍可知,其收敛域一定是 R e [ s ] > α \mathrm{Re[s]}>\alpha Re[s]>α , 也就是说肯定是收敛的,因此其收敛域可以省略。

单边拉普拉斯变换和逆变换公式如下:
F ( s ) = def ⁡ ∫ 0 − ∞ f ( t ) e − s t   d t f ( t ) = def ⁡ [ 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) e s t   d s ] ε ( t ) \begin{array}{l} F(s) \stackrel{\operatorname{def}}{=} \int_{0-}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \\ f(t) \stackrel{\operatorname{def}}{=}\left[\frac{1}{2 \pi \mathrm{j}} \int_{\sigma-\mathrm{j} \infty}^{\sigma+\mathrm{j} \infty} F(s) \mathrm{e}^{s t} \mathrm{~d} s\right] \varepsilon(t) \end{array} F(s)=def0f(t)est dtf(t)=def[2πj1σjσ+jF(s)est ds]ε(t)

单边拉普拉斯变换比双边拉普拉斯变换更常用,所以如果直接说拉普拉斯变换,一般就是指单边拉普拉斯变换。

2. 单边拉普拉斯变换和傅里叶变换的关系

单边拉普拉斯变换和傅里叶变换的定义如下:
F ( s ) = ∫ 0 ∞ f ( t ) e − s t   d t Re ⁡ [ s ] > σ 0 F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t   d t \begin{array}{l} F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \quad \operatorname{Re}[s]>\sigma_{0} \\ F(\mathrm{j} \omega)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \end{array} F(s)=0f(t)est dtRe[s]>σ0F(jω)=f(t)ejωt dt
可见,若要讨论他们之间的关系, f ( t ) f(t) f(t) 必须为因果信号,根据收敛坐标 σ 0 \sigma _0 σ0 的值,可分为以下三种情况:

σ 0 < 0 \sigma_0<0 σ0<0 , 即 F ( s ) F(s) F(s) 的收敛域包含 j ω j\omega 轴,则 f ( t ) f(t) f(t) 的傅里叶变换存在,并且 F ( j ω ) = F ( s ) ∣ s = j ω F(j\omega)=F(s)|_{s=j\omega} F()=F(s)s=

如:
f ( t ) = e − 2 t ε ( t ) ⟷ F ( s ) = 1 s + 2 , σ > − 2 f(t)=e^{-2 t}\varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s+2}, \qquad \sigma > -2 f(t)=e2tε(t)F(s)=s+21,σ>2
则:
F ( j ω ) = 1 j ω + 2 F(j\omega) =\frac{1}{j\omega+2} F()=+21
σ 0 = 0 \sigma_0=0 σ0=0 , 即 F ( s ) F(s) F(s) 的收敛边界为 j ω j\omega 轴,则有 F ( j ω ) = lim ⁡ σ → 0 F ( s ) F(\mathrm{j} \omega)=\lim _{\sigma \rightarrow 0} F(s) F(jω)=limσ0F(s) ,如
f ( t ) = ε ( t ) ⟷ F ( s ) = 1 s f(t) = \varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s} f(t)=ε(t)F(s)=s1

则:
F ( j ω ) = lim ⁡ σ → 0 1 σ + j ω = lim ⁡ σ → 0 σ σ 2 + ω 2 + lim ⁡ σ → 0 − j ω σ 2 + ω 2 = π δ ( ω ) + 1 / j ω \begin{aligned} F(j \omega) & =\lim _{\sigma \rightarrow 0} \frac{1}{\sigma+j \omega}=\lim _{\sigma \rightarrow 0} \frac{\sigma}{\sigma^{2}+\omega^{2}}+\lim _{\sigma \rightarrow 0} \frac{-j \omega}{\sigma^{2}+\omega^{2}} \\ & =\pi \delta(\omega)+\mathbf{1} / \mathbf{j} \omega \end{aligned} F()=σ0limσ+1=σ0limσ2+ω2σ+σ0limσ2+ω2=πδ(ω)+1/jω
σ 0 > 0 \sigma_0>0 σ0>0 , f ( t ) f(t) f(t) 的傅里叶变换 F ( j ω ) F(j\omega) F() 不存在.

如:
f ( t ) = e 2 t ε ( t ) ⟷ F ( s ) = 1 s − 2 , σ > 2 f(t)=e^{2 t}\varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s-2}, \qquad \sigma > 2 f(t)=e2tε(t)F(s)=s21,σ>2
其傅里叶变换不存在。

3. 常见信号的拉普拉斯变换

3.1 冲激函数 δ ( t ) \delta(t) δ(t)的拉普拉斯变换

δ ( t ) ⟷ 1 , σ > − ∞ \delta(t) \longleftrightarrow 1, \sigma>-\infty δ(t)1,σ>

公式直推:
∫ 0 − ∞ δ ( t ) e − s t   d t = e − s t ∣ t = 0 = 1 , σ > − ∞ \int_{0^-}^{\infty} \delta(t) e^{-s t} \mathrm{~d} t= e^{-s t}|_{t=0}=1, \sigma>-\infty 0δ(t)est dt=estt=0=1,σ>

3.2 阶跃函数 ε ( t ) \varepsilon(t) ε(t) 或常函数 1 1 1 的拉普拉斯变换

ε ( t )  或  1 ⟷ 1 / s , σ > 0 \varepsilon(t) \text { 或 } 1 \longleftrightarrow 1 / s, \sigma>0 ε(t)  11/s,σ>0
公式直推:
∫ 0 − ∞ ε ( t ) e − s t   d t = ∫ 0 − ∞ e − s t   d t = [ − 1 s e − s t ] ∣ t = 0 − t = ∞ = 1 s , σ > 0 \int_{0^-}^{\infty} \varepsilon(t) e^{-s t} \mathrm{~d} t= \int_{0^-}^{\infty} e^{-s t} \mathrm{~d} t=[-\frac{1}{s}e^{-s t}]\Big|_{t=0^-}^{t=\infty}=\frac{1}{s}, \qquad \sigma>0 0ε(t)est dt=0est dt=[s1est] t=0t==s1,σ>0

3.3 指数函数 e s 0 t \mathrm{e}^{s_{0} t} es0t 的拉普拉斯变换

e s 0 t ⟷ 1 s − s 0 σ > Re ⁡ [ s 0 ] \mathrm{e}^{s_{0} t} \longleftrightarrow \frac{1}{s-s_{0}} \quad \sigma>\operatorname{Re}\left[s_{0}\right] es0tss01σ>Re[s0]

3.4 余弦函数 cos ⁡ ω 0 t \cos \omega_{0} t cosω0t 的拉普拉斯变换

cos ⁡ ω 0 t = ( e j ω 0 t + e − j ω 0 t ) 2 ⟷ s s 2 + ω 0 2 \cos \omega_{0} t=\frac{\left(\mathbf{e}^{\mathrm{j} \omega_{0} t}+\mathbf{e}^{-\mathrm{j} \omega_{0} t}\right)}{2} \longleftrightarrow \frac{s}{s^{2}+\omega_{0}^{2}} cosω0t=2(ejω0t+ejω0t)s2+ω02s

3.5 正弦函数 sin ⁡ ω 0 t \sin \omega_{0} t sinω0t 的拉普拉斯变换

sin ⁡ ω 0 t = ( e j ω 0 t − e − j ω 0 t ) 2 j ⟷ ω 0 s 2 + ω 0 2 \sin \omega_{0} \boldsymbol{t}=\frac{\left(\mathbf{e}^{\mathrm{j} \omega_{0} t}-\mathbf{e}^{-\mathrm{j} \omega_{0} t}\right)} {2 \mathbf{j}} \longleftrightarrow \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} sinω0t=2j(ejω0tejω0t)s2+ω02ω0

3.6 周期信号 f T ( t ) f_T(t) fT(t) 的拉普拉斯变换

$$
\begin{aligned}
F_{T}(s)&=\int_{0}^{\infty} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t \
&=\int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t+\int_{T}^{2 T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t+\ldots . . \
&= \sum_{n=0}^{\infty} \int_{n T}^{(n+1) T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t \

\end{aligned}
$$

先做换元,令 t = t + n T t= t+n T t=t+nT ,再根据等比数列前n项和,不难得到:
F T ( s ) = ∑ n = 0 ∞ e − n s T ∫ 0 T f T ( t ) e − s t   d t = 1 1 − e − s T ∫ 0 T f T ( t ) e − s t   d t F_{T}(s)=\sum_{n=0}^{\infty} \mathrm{e}^{-n s T} \int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t=\frac{1}{1-\mathrm{e}^{-s T}} \int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t FT(s)=n=0ensT0TfT(t)est dt=1esT10TfT(t)est dt
特别地,对于梳状周期函数 δ T ( t ) {\delta}_{T}(t) δT(t) ,有:
δ T ( t ) ⟷ 1 1 − e − s T {\delta}_{T}(t) \longleftrightarrow \frac{1}{1-\mathrm{e}^{-s T}} δT(t)1esT1

4. 拉普拉斯变换的性质

4.1 线性性质

若:
f 1 ( t ) ⟷ F 1 ( s ) , Re ⁡ [ s ] > σ 1 ; f 2 ( t ) ⟷ F 2 ( s ) , Re ⁡ [ s ] > σ 2 f_1(t) \longleftrightarrow F_1(s),\quad\operatorname{Re}[s]>\sigma_1; \quad f_2(t) \longleftrightarrow F_2(s),\quad\operatorname{Re}[s]>\sigma_2 f1(t)F1(s),Re[s]>σ1;f2(t)F2(s),Re[s]>σ2
则 :
a 1 f 1 ( t ) + a 2 f 2 ( t ) ⟷ a 1 F 1 ( s ) + a 2 F 2 ( s ) , Re ⁡ [ s ] > m a x ( σ 1 , σ 2 ) a_1f_1(t)+a_2f_2(t)\longleftrightarrow a_1F_1(s)+a_2F_2(s), \quad \operatorname{Re}[s]>max(\sigma_1, \sigma_2) a1f1(t)+a2f2(t)a1F1(s)+a2F2(s),Re[s]>max(σ1,σ2)
证明很简单,直接代入公式即可,看个例子吧:
f ( t ) = δ ( t ) + ε ( t ) ⟷ 1 + 1 s , σ > 0 f(t)=\delta(t)+\varepsilon(t)\longleftrightarrow1+\frac{1}{s}, \quad \sigma >0 f(t)=δ(t)+ε(t)1+s1,σ>0

4.2 尺度变换性质

若:
f ( t ) ⟷ F ( s ) = ∫ 0 − ∞ f ( t ) e − s t   d t , Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)=0f(t)est dt,Re[s]>σ0
且有实数 a > 0 a>0 a>0 , 那么:
f ( a t ) ⟷ 1 a F ( s a ) , Re ⁡ [ s ] > a σ 0 f(at) \longleftrightarrow \frac{1}{a}F(\frac{s}{a}),\quad \operatorname{Re}[s]>a\sigma_0 f(at)a1F(as),Re[s]>aσ0
证明也很简单,直接贴图:

尺度变换性质的证明

举个应用的例子吧:

例-拉氏变换尺度变换性质

4.3 时移性质

若:
f ( t ) ⟷ F ( s ) = ∫ 0 − ∞ f ( t ) e − s t   d t , Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)=0f(t)est dt,Re[s]>σ0
且有实常数 t 0 > 0 t_0>0 t0>0 , 那么:
f ( t − t 0 ) ε ( t − t 0 ) ⟷ e − s t 0 F ( s ) , Re ⁡ [ s ] > σ 0 f(t-t_0)\varepsilon(t-t_0)\longleftrightarrow e^{-st_0}F(s), \quad \operatorname{Re}[s]>\sigma_0 f(tt0)ε(tt0)est0F(s),Re[s]>σ0
如果 f ( t ) f(t) f(t) 是因果信号,则直接描述为:
f ( t − t 0 ) ⟷ e − s t 0 F ( s ) , Re ⁡ [ s ] > σ 0 f(t-t_0)\longleftrightarrow e^{-st_0}F(s), \quad \operatorname{Re}[s]>\sigma_0 f(tt0)est0F(s),Re[s]>σ0
如果将时移性质和尺度变换性质一结合,我们能得到一个更长的式子:
f ( a t − t 0 ) ε ( a t − t 0 ) ⟷ 1 a e − s t 0 a F ( s a ) f(at-t_0)\varepsilon(at-t_0)\longleftrightarrow \frac{1}{a}e^{-s\frac{t_0}{a}}F(\frac{s}{a}) f(att0)ε(att0)a1esat0F(as)

4.4 复频移性质

若:
f ( t ) ⟷ F ( s ) = ∫ 0 − ∞ f ( t ) e − s t   d t , Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)=0f(t)est dt,Re[s]>σ0
则 :
e − a t f ( t ) ⟷ F ( s + a ) , Re ⁡ [ s ] > σ 0 − a e a t f ( t ) ⟷ F ( s − a ) , Re ⁡ [ s ] > σ 0 + a e^{-at}f(t)\longleftrightarrow F(s+a), \quad \operatorname{Re}[s]>\sigma_0-a\\ e^{at}f(t)\longleftrightarrow F(s-a), \quad \operatorname{Re}[s]>\sigma_0+a eatf(t)F(s+a),Re[s]>σ0aeatf(t)F(sa),Re[s]>σ0+a
证明如下:

复频移性质证明

4.5 时域微分性质

若:
f ( t ) ⟷ F ( s ) = ∫ 0 − ∞ f ( t ) e − s t   d t , Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)=0f(t)est dt,Re[s]>σ0
则 :

f ′ ( t ) ⟷ s F ( s ) − f ( 0 − ) f ′ ′ ( t ) ⟷ s 2 F ( s ) − s f ( 0 − ) − f ′ ( 0 − ) f^\prime(t)\longleftrightarrow sF(s)-f(0_-)\\ f^{\prime\prime}(t)\longleftrightarrow s^2F(s)-sf(0_-)-f^\prime(0_-) f(t)sF(s)f(0)f′′(t)s2F(s)sf(0)f(0)
对于更高阶,有:
f ( n ) ( t ) ⟷ s n F ( s ) − s n − 1 f ( 0 − ) − s n − 2 f ′ ( 0 − ) ⋯ ⋯ f ( n − 1 ) ( 0 − ) f^{(n)}(t)\longleftrightarrow s^nF(s)-s^{n-1}f(0_-)-s^{n-2}f^\prime(0_-)\cdots\cdots f^{(n-1)}(0_-) f(n)(t)snF(s)sn1f(0)sn2f(0)⋯⋯f(n1)(0)

如果 f ( t ) f(t) f(t) 为因果信号,则有:
f ( n ) ( t ) ⟷ s n F ( s ) f^{(n)}(t)\longleftrightarrow s^nF(s) f(n)(t)snF(s)
只给出一阶情况下的证明,更高阶的证明方法是一样的(可以递归式的证明):
f ′ ( t ) ⟷ ∫ 0 − ∞ e − s t f ′ ( t ) d t = ∫ 0 − ∞ e − s t d ( f ( t ) ) = ( e − s t f ( t ) ) 0 − ∞ − ∫ 0 − ∞ f ( t ) d ( e − s t ) = ( 0 − f ( 0 − ) ) − ∫ 0 − ∞ f ( t ) e − s t ( − s ) d t = − f ( 0 − ) + s ∫ 0 − ∞ e − s t f ( t ) d t = s F ( s ) − f ( 0 − ) \begin{aligned} f^\prime(t) \longleftrightarrow &\int_{0_-}^{\infty} e^{-s t} f^\prime(t) d t \\ & =\int_{0_-}^{\infty} e^{-s t} d(f(t))\\ &=\left(e^{-s t} f(t)\right)_{0_-}^{\infty}-\int_{0_-}^{\infty} f(t) d\left(e^{-s t}\right) \\ &=(0-f(0_-))-\int_{0_-}^{\infty} f(t) e^{-s t}(-s) d t \\ &=-f(0_-)+s \int_{0_-}^{\infty} e^{-s t} f(t) d t \\ &=s F(s)-f(0_-) \end{aligned} f(t)0estf(t)dt=0estd(f(t))=(estf(t))00f(t)d(est)=(0f(0))0f(t)est(s)dt=f(0)+s0estf(t)dt=sF(s)f(0)
故得证。

给出几个例子:

几个例子

4.6 时域积分性质

为了方便, f ( t ) f(t) f(t) 的拉普拉斯变换接下来用符号 L [ f ( t ) ] L[f(t)] L[f(t)] 表示,那么时域积分性质可以这么描述:如果 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s) , 那么:
L [ ∫ 0 − t f ( x )   d x ] = 1 s F ( s ) L\Big[\int_{0^-}^{t} f(x) \mathrm{~d} x\Big]=\frac{1}{s}F(s) L[0tf(x) dx]=s1F(s)
证明过程如下:


∫ 0 − t f ( x )   d x = ϕ ( t ) \int_{0^-}^{t} f(x)\mathrm{~d} x=\phi(t) 0tf(x) dx=ϕ(t)
那么,
f ( t ) = ϕ ′ ( t ) , ϕ ( 0 − ) = ∫ 0 − 0 − f ( x )   d x = 0 f(t)=\phi^\prime(t), \quad \phi(0_-)=\int_{0^-}^{0_-} f(x)\mathrm{~d} x=0 f(t)=ϕ(t),ϕ(0)=00f(x) dx=0
由时域微分性质,有
L [ ϕ ′ ( t ) ] = s L [ ϕ ( t ) ] − ϕ ( 0 − ) = s L [ ϕ ( t ) ] \begin{aligned} L[\phi^\prime(t)]&=s L[\phi(t)]-\phi(0_-)\\ &=s L[\phi(t)]\\ \end{aligned} L[ϕ(t)]=sL[ϕ(t)]ϕ(0)=sL[ϕ(t)]
所以:
L [ f ( t ) ] = s L [ ∫ 0 − t f ( x )   d x ] L[f(t)]=s L\Big[\int_{0^-}^{t} f(x)\mathrm{~d} x\Big]\\ L[f(t)]=sL[0tf(x) dx]
故得证;

利用同样的证明方法,可以得到:
L [ ∫ 0 t ∫ 0 t ⋯ ⋅ ∫ 0 t f ( t ) d t ⏟ n  items  ] = 1 s n L [ f ( t ) ] L[\underbrace{\int_{0}^{t} \int_{0}^{t} \cdots \cdot \int_{0}^{t} f(t) d t}_{n \text { items }}]=\frac{1}{s^{n}} L[f(t)] L[n items  0t0t0tf(t)dt]=sn1L[f(t)]

4.7 s域微分性质

若:
f ( t ) ⟷ F ( s ) Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)Re[s]>σ0
则 :
( − t ) n f ( t ) ⟷ d n   F ( s ) d   s n (-t)^nf(t)\longleftrightarrow \frac {\mathrm{d}^n\:F(s)}{\mathrm{d}\:s^n} (t)nf(t)dsndnF(s)
直接代入公式得证.

4.8 s域积分性质

若:
f ( t ) ⟷ F ( s ) Re ⁡ [ s ] > σ 0 f(t) \longleftrightarrow F(s)\quad \operatorname{Re}[s]>\sigma_0 f(t)F(s)Re[s]>σ0
则 :
f ( t ) t ⟷ ∫ s ∞ F ( η )   d η \frac{f(t)}{t}\longleftrightarrow \int_{s}^{\infty}F(\eta)\:\mathrm{d}\eta tf(t)sF(η)dη

4.9 卷积定理

时域卷积定理:若因果函数
f 1 ( t ) ⟷ F 1 ( s ) , Re ⁡ [ s ] > σ 1 f 2 ( t ) ⟷ F 2 ( s ) , Re ⁡ [ s ] > σ 2 f_1(t) \longleftrightarrow F_1(s), \quad \operatorname{Re}[s]>\sigma_1\\ f_2(t) \longleftrightarrow F_2(s), \quad \operatorname{Re}[s]>\sigma_2\\ f1(t)F1(s),Re[s]>σ1f2(t)F2(s),Re[s]>σ2

f 1 ( t ) ∗ f 2 ( t ) ⟷ F 1 ( s ) F 2 ( s ) f_{1}(t){*} f_{2}(t) \longleftrightarrow F_{1}(s) F_{2}(s) f1(t)f2(t)F1(s)F2(s)

复频域卷积定理:

f 1 ( t ) f 2 ( t ) ⟷ 1 2 π j ∫ c − j ∞ c + j ∞ F 1 ( η ) F 2 ( s − η )   d η f_{1}(t)f_{2}(t) \longleftrightarrow \frac{1}{2\pi\mathbf{j}}\int_{c-j\infty}^{c+j\infty}F_1(\eta)F_2(s-\eta)\:\mathrm{d}\eta f1(t)f2(t)2πj1cjc+jF1(η)F2(sη)dη
证明过程同 傅里叶变换的卷积定理 类似.

4.10 初值定理

设函数 f ( t ) f(t) f(t) 不含 δ ( t ) \delta(t) δ(t) 及其各阶导数(即 F ( s ) F(s) F(s) 为真分式), 若 F ( s ) F(s) F(s) 为假分式化为真分式), 则
f ( 0 + ) = lim ⁡ t → 0 + f ( t ) = lim ⁡ s → ∞ s F ( s ) f\left(0_{+}\right)=\lim _{t \rightarrow 0_{+}} f(t)=\lim _{s \rightarrow \infty} s F(s) f(0+)=t0+limf(t)=slimsF(s)
由时域微分定理可知:
s F ( s ) − f ( 0 − ) = L [ d f ( t ) d t ] = ∫ 0 − ∞ d f ( t ) d t e − s t   d t = ∫ 0 − 0 + d f ( t ) d t e − s t   d t + ∫ 0 + ∞ d f ( t ) d t e − s t   d t = f ( 0 + ) − f ( 0 − ) + ∫ 0 + ∞ d f ( t ) d t e − s t   d t \begin{aligned} s F(s)-f\left(0_{-}\right) & =\mathrm{L}\left[\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right]\\&=\int_{0_{-}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \\ & =\int_{0_{-}}^{0_{+}} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \\ & =f\left(0_{+}\right)-f\left(0_{-}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \end{aligned} sF(s)f(0)=L[dtdf(t)]=0dtdf(t)est dt=00+dtdf(t)est dt+0+dtdf(t)est dt=f(0+)f(0)+0+dtdf(t)est dt
所以:
s F ( s ) = f ( 0 + ) + ∫ 0 + ∞ d f ( t ) d t e − s t   d t s F(s) =f\left(0_{+}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t sF(s)=f(0+)+0+dtdf(t)est dt
又因为:
lim ⁡ s → ∞ [ ∫ 0 + ∞ d f ( t ) d t e − s t   d t ] = ∫ 0 + ∞ d f ( t ) d t [ lim ⁡ s → ∞ e − s t ] d t = 0 \lim _{s \rightarrow \infty}\left[\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t\right]=\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t}\left[\lim _{s \rightarrow \infty} \mathrm{e}^{-s t}\right] \mathrm{d} t=0 slim[0+dtdf(t)est dt]=0+dtdf(t)[slimest]dt=0
所以:
lim ⁡ t → 0 + f ( t ) = f ( 0 + ) = lim ⁡ s → ∞ s F ( s ) \lim _{t \rightarrow 0_{+}} f(t)=f\left(0_{+}\right)=\lim _{s \rightarrow \infty} s F(s) t0+limf(t)=f(0+)=slimsF(s)
故得证.

4.11 终值定理

f ( t ) f(t) f(t) t → ∞ t→∞ t 时存在,并且 f ( t ) ⟷ F ( s ) ,   R e [ s ] > σ 0 ,   σ 0 < 0 f(t)\longleftrightarrow F(s) ,\: Re[s]>\sigma_0 ,\: \sigma_0 <0 f(t)F(s),Re[s]>σ0,σ0<0 ,则
lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim _{t\rightarrow \infty}f(t)=\lim _{s \rightarrow 0} s F(s) tlimf(t)=s0limsF(s)
可以根据证明初值定理证明时得到的公式
s F ( s ) = f ( 0 + ) + ∫ 0 + ∞ d f ( t ) d t e − s t   d t s F(s) =f\left(0_{+}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t sF(s)=f(0+)+0+dtdf(t)est dt

s → 0 s\rightarrow 0 s0 可以得证.

文章首发于公众号 振动信号研究所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值