拉普拉斯值得细说.
1. 单边拉普拉斯变换的定义
现实生活中,通常我们遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。这样,在 t < 0 t<0 t<0 时, f ( t ) = 0 f(t)=0 f(t)=0 .单边拉普拉斯变换定义为:
F
(
s
)
=
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t \\
F(s)=∫0−∞f(t)e−st dt
因为这里被积函数在积分上下限的定义域内是因果信号,由上一篇 的介绍可知,其收敛域一定是
R
e
[
s
]
>
α
\mathrm{Re[s]}>\alpha
Re[s]>α , 也就是说肯定是收敛的,因此其收敛域可以省略。
单边拉普拉斯变换和逆变换公式如下:
F
(
s
)
=
def
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
f
(
t
)
=
def
[
1
2
π
j
∫
σ
−
j
∞
σ
+
j
∞
F
(
s
)
e
s
t
d
s
]
ε
(
t
)
\begin{array}{l} F(s) \stackrel{\operatorname{def}}{=} \int_{0-}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \\ f(t) \stackrel{\operatorname{def}}{=}\left[\frac{1}{2 \pi \mathrm{j}} \int_{\sigma-\mathrm{j} \infty}^{\sigma+\mathrm{j} \infty} F(s) \mathrm{e}^{s t} \mathrm{~d} s\right] \varepsilon(t) \end{array}
F(s)=def∫0−∞f(t)e−st dtf(t)=def[2πj1∫σ−j∞σ+j∞F(s)est ds]ε(t)
单边拉普拉斯变换比双边拉普拉斯变换更常用,所以如果直接说拉普拉斯变换,一般就是指单边拉普拉斯变换。
2. 单边拉普拉斯变换和傅里叶变换的关系
单边拉普拉斯变换和傅里叶变换的定义如下:
F
(
s
)
=
∫
0
∞
f
(
t
)
e
−
s
t
d
t
Re
[
s
]
>
σ
0
F
(
j
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
j
ω
t
d
t
\begin{array}{l} F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \quad \operatorname{Re}[s]>\sigma_{0} \\ F(\mathrm{j} \omega)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \end{array}
F(s)=∫0∞f(t)e−st dtRe[s]>σ0F(jω)=∫−∞∞f(t)e−jωt dt
可见,若要讨论他们之间的关系,
f
(
t
)
f(t)
f(t) 必须为因果信号,根据收敛坐标
σ
0
\sigma _0
σ0 的值,可分为以下三种情况:
① σ 0 < 0 \sigma_0<0 σ0<0 , 即 F ( s ) F(s) F(s) 的收敛域包含 j ω j\omega jω 轴,则 f ( t ) f(t) f(t) 的傅里叶变换存在,并且 F ( j ω ) = F ( s ) ∣ s = j ω F(j\omega)=F(s)|_{s=j\omega} F(jω)=F(s)∣s=jω
如:
f
(
t
)
=
e
−
2
t
ε
(
t
)
⟷
F
(
s
)
=
1
s
+
2
,
σ
>
−
2
f(t)=e^{-2 t}\varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s+2}, \qquad \sigma > -2
f(t)=e−2tε(t)⟷F(s)=s+21,σ>−2
则:
F
(
j
ω
)
=
1
j
ω
+
2
F(j\omega) =\frac{1}{j\omega+2}
F(jω)=jω+21
②
σ
0
=
0
\sigma_0=0
σ0=0 , 即
F
(
s
)
F(s)
F(s) 的收敛边界为
j
ω
j\omega
jω 轴,则有
F
(
j
ω
)
=
lim
σ
→
0
F
(
s
)
F(\mathrm{j} \omega)=\lim _{\sigma \rightarrow 0} F(s)
F(jω)=limσ→0F(s) ,如
f
(
t
)
=
ε
(
t
)
⟷
F
(
s
)
=
1
s
f(t) = \varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s}
f(t)=ε(t)⟷F(s)=s1
则:
F
(
j
ω
)
=
lim
σ
→
0
1
σ
+
j
ω
=
lim
σ
→
0
σ
σ
2
+
ω
2
+
lim
σ
→
0
−
j
ω
σ
2
+
ω
2
=
π
δ
(
ω
)
+
1
/
j
ω
\begin{aligned} F(j \omega) & =\lim _{\sigma \rightarrow 0} \frac{1}{\sigma+j \omega}=\lim _{\sigma \rightarrow 0} \frac{\sigma}{\sigma^{2}+\omega^{2}}+\lim _{\sigma \rightarrow 0} \frac{-j \omega}{\sigma^{2}+\omega^{2}} \\ & =\pi \delta(\omega)+\mathbf{1} / \mathbf{j} \omega \end{aligned}
F(jω)=σ→0limσ+jω1=σ→0limσ2+ω2σ+σ→0limσ2+ω2−jω=πδ(ω)+1/jω
③
σ
0
>
0
\sigma_0>0
σ0>0 ,
f
(
t
)
f(t)
f(t) 的傅里叶变换
F
(
j
ω
)
F(j\omega)
F(jω) 不存在.
如:
f
(
t
)
=
e
2
t
ε
(
t
)
⟷
F
(
s
)
=
1
s
−
2
,
σ
>
2
f(t)=e^{2 t}\varepsilon(t) \longleftrightarrow F(s)=\frac{1}{s-2}, \qquad \sigma > 2
f(t)=e2tε(t)⟷F(s)=s−21,σ>2
其傅里叶变换不存在。
3. 常见信号的拉普拉斯变换
3.1 冲激函数 δ ( t ) \delta(t) δ(t)的拉普拉斯变换
δ ( t ) ⟷ 1 , σ > − ∞ \delta(t) \longleftrightarrow 1, \sigma>-\infty δ(t)⟷1,σ>−∞
公式直推:
∫
0
−
∞
δ
(
t
)
e
−
s
t
d
t
=
e
−
s
t
∣
t
=
0
=
1
,
σ
>
−
∞
\int_{0^-}^{\infty} \delta(t) e^{-s t} \mathrm{~d} t= e^{-s t}|_{t=0}=1, \sigma>-\infty
∫0−∞δ(t)e−st dt=e−st∣t=0=1,σ>−∞
3.2 阶跃函数 ε ( t ) \varepsilon(t) ε(t) 或常函数 1 1 1 的拉普拉斯变换
ε
(
t
)
或
1
⟷
1
/
s
,
σ
>
0
\varepsilon(t) \text { 或 } 1 \longleftrightarrow 1 / s, \sigma>0
ε(t) 或 1⟷1/s,σ>0
公式直推:
∫
0
−
∞
ε
(
t
)
e
−
s
t
d
t
=
∫
0
−
∞
e
−
s
t
d
t
=
[
−
1
s
e
−
s
t
]
∣
t
=
0
−
t
=
∞
=
1
s
,
σ
>
0
\int_{0^-}^{\infty} \varepsilon(t) e^{-s t} \mathrm{~d} t= \int_{0^-}^{\infty} e^{-s t} \mathrm{~d} t=[-\frac{1}{s}e^{-s t}]\Big|_{t=0^-}^{t=\infty}=\frac{1}{s}, \qquad \sigma>0
∫0−∞ε(t)e−st dt=∫0−∞e−st dt=[−s1e−st]
t=0−t=∞=s1,σ>0
3.3 指数函数 e s 0 t \mathrm{e}^{s_{0} t} es0t 的拉普拉斯变换
e s 0 t ⟷ 1 s − s 0 σ > Re [ s 0 ] \mathrm{e}^{s_{0} t} \longleftrightarrow \frac{1}{s-s_{0}} \quad \sigma>\operatorname{Re}\left[s_{0}\right] es0t⟷s−s01σ>Re[s0]
3.4 余弦函数 cos ω 0 t \cos \omega_{0} t cosω0t 的拉普拉斯变换
cos ω 0 t = ( e j ω 0 t + e − j ω 0 t ) 2 ⟷ s s 2 + ω 0 2 \cos \omega_{0} t=\frac{\left(\mathbf{e}^{\mathrm{j} \omega_{0} t}+\mathbf{e}^{-\mathrm{j} \omega_{0} t}\right)}{2} \longleftrightarrow \frac{s}{s^{2}+\omega_{0}^{2}} cosω0t=2(ejω0t+e−jω0t)⟷s2+ω02s
3.5 正弦函数 sin ω 0 t \sin \omega_{0} t sinω0t 的拉普拉斯变换
sin ω 0 t = ( e j ω 0 t − e − j ω 0 t ) 2 j ⟷ ω 0 s 2 + ω 0 2 \sin \omega_{0} \boldsymbol{t}=\frac{\left(\mathbf{e}^{\mathrm{j} \omega_{0} t}-\mathbf{e}^{-\mathrm{j} \omega_{0} t}\right)} {2 \mathbf{j}} \longleftrightarrow \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} sinω0t=2j(ejω0t−e−jω0t)⟷s2+ω02ω0
3.6 周期信号 f T ( t ) f_T(t) fT(t) 的拉普拉斯变换
$$
\begin{aligned}
F_{T}(s)&=\int_{0}^{\infty} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t \
&=\int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t+\int_{T}^{2 T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t+\ldots . . \
&= \sum_{n=0}^{\infty} \int_{n T}^{(n+1) T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t \
\end{aligned}
$$
先做换元,令
t
=
t
+
n
T
t= t+n T
t=t+nT ,再根据等比数列前n项和,不难得到:
F
T
(
s
)
=
∑
n
=
0
∞
e
−
n
s
T
∫
0
T
f
T
(
t
)
e
−
s
t
d
t
=
1
1
−
e
−
s
T
∫
0
T
f
T
(
t
)
e
−
s
t
d
t
F_{T}(s)=\sum_{n=0}^{\infty} \mathrm{e}^{-n s T} \int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t=\frac{1}{1-\mathrm{e}^{-s T}} \int_{0}^{T} f_{T}(t) \mathrm{e}^{-s t} \mathrm{~d} t
FT(s)=n=0∑∞e−nsT∫0TfT(t)e−st dt=1−e−sT1∫0TfT(t)e−st dt
特别地,对于梳状周期函数
δ
T
(
t
)
{\delta}_{T}(t)
δT(t) ,有:
δ
T
(
t
)
⟷
1
1
−
e
−
s
T
{\delta}_{T}(t) \longleftrightarrow \frac{1}{1-\mathrm{e}^{-s T}}
δT(t)⟷1−e−sT1
4. 拉普拉斯变换的性质
4.1 线性性质
若:
f
1
(
t
)
⟷
F
1
(
s
)
,
Re
[
s
]
>
σ
1
;
f
2
(
t
)
⟷
F
2
(
s
)
,
Re
[
s
]
>
σ
2
f_1(t) \longleftrightarrow F_1(s),\quad\operatorname{Re}[s]>\sigma_1; \quad f_2(t) \longleftrightarrow F_2(s),\quad\operatorname{Re}[s]>\sigma_2
f1(t)⟷F1(s),Re[s]>σ1;f2(t)⟷F2(s),Re[s]>σ2
则 :
a
1
f
1
(
t
)
+
a
2
f
2
(
t
)
⟷
a
1
F
1
(
s
)
+
a
2
F
2
(
s
)
,
Re
[
s
]
>
m
a
x
(
σ
1
,
σ
2
)
a_1f_1(t)+a_2f_2(t)\longleftrightarrow a_1F_1(s)+a_2F_2(s), \quad \operatorname{Re}[s]>max(\sigma_1, \sigma_2)
a1f1(t)+a2f2(t)⟷a1F1(s)+a2F2(s),Re[s]>max(σ1,σ2)
证明很简单,直接代入公式即可,看个例子吧:
f
(
t
)
=
δ
(
t
)
+
ε
(
t
)
⟷
1
+
1
s
,
σ
>
0
f(t)=\delta(t)+\varepsilon(t)\longleftrightarrow1+\frac{1}{s}, \quad \sigma >0
f(t)=δ(t)+ε(t)⟷1+s1,σ>0
4.2 尺度变换性质
若:
f
(
t
)
⟷
F
(
s
)
=
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
,
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)=∫0−∞f(t)e−st dt,Re[s]>σ0
且有实数
a
>
0
a>0
a>0 , 那么:
f
(
a
t
)
⟷
1
a
F
(
s
a
)
,
Re
[
s
]
>
a
σ
0
f(at) \longleftrightarrow \frac{1}{a}F(\frac{s}{a}),\quad \operatorname{Re}[s]>a\sigma_0
f(at)⟷a1F(as),Re[s]>aσ0
证明也很简单,直接贴图:
举个应用的例子吧:
4.3 时移性质
若:
f
(
t
)
⟷
F
(
s
)
=
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
,
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)=∫0−∞f(t)e−st dt,Re[s]>σ0
且有实常数
t
0
>
0
t_0>0
t0>0 , 那么:
f
(
t
−
t
0
)
ε
(
t
−
t
0
)
⟷
e
−
s
t
0
F
(
s
)
,
Re
[
s
]
>
σ
0
f(t-t_0)\varepsilon(t-t_0)\longleftrightarrow e^{-st_0}F(s), \quad \operatorname{Re}[s]>\sigma_0
f(t−t0)ε(t−t0)⟷e−st0F(s),Re[s]>σ0
如果
f
(
t
)
f(t)
f(t) 是因果信号,则直接描述为:
f
(
t
−
t
0
)
⟷
e
−
s
t
0
F
(
s
)
,
Re
[
s
]
>
σ
0
f(t-t_0)\longleftrightarrow e^{-st_0}F(s), \quad \operatorname{Re}[s]>\sigma_0
f(t−t0)⟷e−st0F(s),Re[s]>σ0
如果将时移性质和尺度变换性质一结合,我们能得到一个更长的式子:
f
(
a
t
−
t
0
)
ε
(
a
t
−
t
0
)
⟷
1
a
e
−
s
t
0
a
F
(
s
a
)
f(at-t_0)\varepsilon(at-t_0)\longleftrightarrow \frac{1}{a}e^{-s\frac{t_0}{a}}F(\frac{s}{a})
f(at−t0)ε(at−t0)⟷a1e−sat0F(as)
4.4 复频移性质
若:
f
(
t
)
⟷
F
(
s
)
=
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
,
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)=∫0−∞f(t)e−st dt,Re[s]>σ0
则 :
e
−
a
t
f
(
t
)
⟷
F
(
s
+
a
)
,
Re
[
s
]
>
σ
0
−
a
e
a
t
f
(
t
)
⟷
F
(
s
−
a
)
,
Re
[
s
]
>
σ
0
+
a
e^{-at}f(t)\longleftrightarrow F(s+a), \quad \operatorname{Re}[s]>\sigma_0-a\\ e^{at}f(t)\longleftrightarrow F(s-a), \quad \operatorname{Re}[s]>\sigma_0+a
e−atf(t)⟷F(s+a),Re[s]>σ0−aeatf(t)⟷F(s−a),Re[s]>σ0+a
证明如下:
4.5 时域微分性质
若:
f
(
t
)
⟷
F
(
s
)
=
∫
0
−
∞
f
(
t
)
e
−
s
t
d
t
,
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)=\int_{0^-}^{\infty} f(t) e^{-s t} \mathrm{~d} t,\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)=∫0−∞f(t)e−st dt,Re[s]>σ0
则 :
f
′
(
t
)
⟷
s
F
(
s
)
−
f
(
0
−
)
f
′
′
(
t
)
⟷
s
2
F
(
s
)
−
s
f
(
0
−
)
−
f
′
(
0
−
)
f^\prime(t)\longleftrightarrow sF(s)-f(0_-)\\ f^{\prime\prime}(t)\longleftrightarrow s^2F(s)-sf(0_-)-f^\prime(0_-)
f′(t)⟷sF(s)−f(0−)f′′(t)⟷s2F(s)−sf(0−)−f′(0−)
对于更高阶,有:
f
(
n
)
(
t
)
⟷
s
n
F
(
s
)
−
s
n
−
1
f
(
0
−
)
−
s
n
−
2
f
′
(
0
−
)
⋯
⋯
f
(
n
−
1
)
(
0
−
)
f^{(n)}(t)\longleftrightarrow s^nF(s)-s^{n-1}f(0_-)-s^{n-2}f^\prime(0_-)\cdots\cdots f^{(n-1)}(0_-)
f(n)(t)⟷snF(s)−sn−1f(0−)−sn−2f′(0−)⋯⋯f(n−1)(0−)
如果
f
(
t
)
f(t)
f(t) 为因果信号,则有:
f
(
n
)
(
t
)
⟷
s
n
F
(
s
)
f^{(n)}(t)\longleftrightarrow s^nF(s)
f(n)(t)⟷snF(s)
只给出一阶情况下的证明,更高阶的证明方法是一样的(可以递归式的证明):
f
′
(
t
)
⟷
∫
0
−
∞
e
−
s
t
f
′
(
t
)
d
t
=
∫
0
−
∞
e
−
s
t
d
(
f
(
t
)
)
=
(
e
−
s
t
f
(
t
)
)
0
−
∞
−
∫
0
−
∞
f
(
t
)
d
(
e
−
s
t
)
=
(
0
−
f
(
0
−
)
)
−
∫
0
−
∞
f
(
t
)
e
−
s
t
(
−
s
)
d
t
=
−
f
(
0
−
)
+
s
∫
0
−
∞
e
−
s
t
f
(
t
)
d
t
=
s
F
(
s
)
−
f
(
0
−
)
\begin{aligned} f^\prime(t) \longleftrightarrow &\int_{0_-}^{\infty} e^{-s t} f^\prime(t) d t \\ & =\int_{0_-}^{\infty} e^{-s t} d(f(t))\\ &=\left(e^{-s t} f(t)\right)_{0_-}^{\infty}-\int_{0_-}^{\infty} f(t) d\left(e^{-s t}\right) \\ &=(0-f(0_-))-\int_{0_-}^{\infty} f(t) e^{-s t}(-s) d t \\ &=-f(0_-)+s \int_{0_-}^{\infty} e^{-s t} f(t) d t \\ &=s F(s)-f(0_-) \end{aligned}
f′(t)⟷∫0−∞e−stf′(t)dt=∫0−∞e−std(f(t))=(e−stf(t))0−∞−∫0−∞f(t)d(e−st)=(0−f(0−))−∫0−∞f(t)e−st(−s)dt=−f(0−)+s∫0−∞e−stf(t)dt=sF(s)−f(0−)
故得证。
给出几个例子:
4.6 时域积分性质
为了方便,
f
(
t
)
f(t)
f(t) 的拉普拉斯变换接下来用符号
L
[
f
(
t
)
]
L[f(t)]
L[f(t)] 表示,那么时域积分性质可以这么描述:如果
L
[
f
(
t
)
]
=
F
(
s
)
L[f(t)]=F(s)
L[f(t)]=F(s) , 那么:
L
[
∫
0
−
t
f
(
x
)
d
x
]
=
1
s
F
(
s
)
L\Big[\int_{0^-}^{t} f(x) \mathrm{~d} x\Big]=\frac{1}{s}F(s)
L[∫0−tf(x) dx]=s1F(s)
证明过程如下:
令
∫
0
−
t
f
(
x
)
d
x
=
ϕ
(
t
)
\int_{0^-}^{t} f(x)\mathrm{~d} x=\phi(t)
∫0−tf(x) dx=ϕ(t)
那么,
f
(
t
)
=
ϕ
′
(
t
)
,
ϕ
(
0
−
)
=
∫
0
−
0
−
f
(
x
)
d
x
=
0
f(t)=\phi^\prime(t), \quad \phi(0_-)=\int_{0^-}^{0_-} f(x)\mathrm{~d} x=0
f(t)=ϕ′(t),ϕ(0−)=∫0−0−f(x) dx=0
由时域微分性质,有
L
[
ϕ
′
(
t
)
]
=
s
L
[
ϕ
(
t
)
]
−
ϕ
(
0
−
)
=
s
L
[
ϕ
(
t
)
]
\begin{aligned} L[\phi^\prime(t)]&=s L[\phi(t)]-\phi(0_-)\\ &=s L[\phi(t)]\\ \end{aligned}
L[ϕ′(t)]=sL[ϕ(t)]−ϕ(0−)=sL[ϕ(t)]
所以:
L
[
f
(
t
)
]
=
s
L
[
∫
0
−
t
f
(
x
)
d
x
]
L[f(t)]=s L\Big[\int_{0^-}^{t} f(x)\mathrm{~d} x\Big]\\
L[f(t)]=sL[∫0−tf(x) dx]
故得证;
利用同样的证明方法,可以得到:
L
[
∫
0
t
∫
0
t
⋯
⋅
∫
0
t
f
(
t
)
d
t
⏟
n
items
]
=
1
s
n
L
[
f
(
t
)
]
L[\underbrace{\int_{0}^{t} \int_{0}^{t} \cdots \cdot \int_{0}^{t} f(t) d t}_{n \text { items }}]=\frac{1}{s^{n}} L[f(t)]
L[n items
∫0t∫0t⋯⋅∫0tf(t)dt]=sn1L[f(t)]
4.7 s域微分性质
若:
f
(
t
)
⟷
F
(
s
)
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)Re[s]>σ0
则 :
(
−
t
)
n
f
(
t
)
⟷
d
n
F
(
s
)
d
s
n
(-t)^nf(t)\longleftrightarrow \frac {\mathrm{d}^n\:F(s)}{\mathrm{d}\:s^n}
(−t)nf(t)⟷dsndnF(s)
直接代入公式得证.
4.8 s域积分性质
若:
f
(
t
)
⟷
F
(
s
)
Re
[
s
]
>
σ
0
f(t) \longleftrightarrow F(s)\quad \operatorname{Re}[s]>\sigma_0
f(t)⟷F(s)Re[s]>σ0
则 :
f
(
t
)
t
⟷
∫
s
∞
F
(
η
)
d
η
\frac{f(t)}{t}\longleftrightarrow \int_{s}^{\infty}F(\eta)\:\mathrm{d}\eta
tf(t)⟷∫s∞F(η)dη
4.9 卷积定理
时域卷积定理:若因果函数
f
1
(
t
)
⟷
F
1
(
s
)
,
Re
[
s
]
>
σ
1
f
2
(
t
)
⟷
F
2
(
s
)
,
Re
[
s
]
>
σ
2
f_1(t) \longleftrightarrow F_1(s), \quad \operatorname{Re}[s]>\sigma_1\\ f_2(t) \longleftrightarrow F_2(s), \quad \operatorname{Re}[s]>\sigma_2\\
f1(t)⟷F1(s),Re[s]>σ1f2(t)⟷F2(s),Re[s]>σ2
则
f
1
(
t
)
∗
f
2
(
t
)
⟷
F
1
(
s
)
F
2
(
s
)
f_{1}(t){*} f_{2}(t) \longleftrightarrow F_{1}(s) F_{2}(s)
f1(t)∗f2(t)⟷F1(s)F2(s)
复频域卷积定理:
f
1
(
t
)
f
2
(
t
)
⟷
1
2
π
j
∫
c
−
j
∞
c
+
j
∞
F
1
(
η
)
F
2
(
s
−
η
)
d
η
f_{1}(t)f_{2}(t) \longleftrightarrow \frac{1}{2\pi\mathbf{j}}\int_{c-j\infty}^{c+j\infty}F_1(\eta)F_2(s-\eta)\:\mathrm{d}\eta
f1(t)f2(t)⟷2πj1∫c−j∞c+j∞F1(η)F2(s−η)dη
证明过程同 傅里叶变换的卷积定理 类似.
4.10 初值定理
设函数
f
(
t
)
f(t)
f(t) 不含
δ
(
t
)
\delta(t)
δ(t) 及其各阶导数(即
F
(
s
)
F(s)
F(s) 为真分式), 若
F
(
s
)
F(s)
F(s) 为假分式化为真分式), 则
f
(
0
+
)
=
lim
t
→
0
+
f
(
t
)
=
lim
s
→
∞
s
F
(
s
)
f\left(0_{+}\right)=\lim _{t \rightarrow 0_{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
f(0+)=t→0+limf(t)=s→∞limsF(s)
由时域微分定理可知:
s
F
(
s
)
−
f
(
0
−
)
=
L
[
d
f
(
t
)
d
t
]
=
∫
0
−
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
=
∫
0
−
0
+
d
f
(
t
)
d
t
e
−
s
t
d
t
+
∫
0
+
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
=
f
(
0
+
)
−
f
(
0
−
)
+
∫
0
+
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
\begin{aligned} s F(s)-f\left(0_{-}\right) & =\mathrm{L}\left[\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right]\\&=\int_{0_{-}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \\ & =\int_{0_{-}}^{0_{+}} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \\ & =f\left(0_{+}\right)-f\left(0_{-}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t \end{aligned}
sF(s)−f(0−)=L[dtdf(t)]=∫0−∞dtdf(t)e−st dt=∫0−0+dtdf(t)e−st dt+∫0+∞dtdf(t)e−st dt=f(0+)−f(0−)+∫0+∞dtdf(t)e−st dt
所以:
s
F
(
s
)
=
f
(
0
+
)
+
∫
0
+
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
s F(s) =f\left(0_{+}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t
sF(s)=f(0+)+∫0+∞dtdf(t)e−st dt
又因为:
lim
s
→
∞
[
∫
0
+
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
]
=
∫
0
+
∞
d
f
(
t
)
d
t
[
lim
s
→
∞
e
−
s
t
]
d
t
=
0
\lim _{s \rightarrow \infty}\left[\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t\right]=\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t}\left[\lim _{s \rightarrow \infty} \mathrm{e}^{-s t}\right] \mathrm{d} t=0
s→∞lim[∫0+∞dtdf(t)e−st dt]=∫0+∞dtdf(t)[s→∞lime−st]dt=0
所以:
lim
t
→
0
+
f
(
t
)
=
f
(
0
+
)
=
lim
s
→
∞
s
F
(
s
)
\lim _{t \rightarrow 0_{+}} f(t)=f\left(0_{+}\right)=\lim _{s \rightarrow \infty} s F(s)
t→0+limf(t)=f(0+)=s→∞limsF(s)
故得证.
4.11 终值定理
若
f
(
t
)
f(t)
f(t) 当
t
→
∞
t→∞
t→∞ 时存在,并且
f
(
t
)
⟷
F
(
s
)
,
R
e
[
s
]
>
σ
0
,
σ
0
<
0
f(t)\longleftrightarrow F(s) ,\: Re[s]>\sigma_0 ,\: \sigma_0 <0
f(t)⟷F(s),Re[s]>σ0,σ0<0 ,则
lim
t
→
∞
f
(
t
)
=
lim
s
→
0
s
F
(
s
)
\lim _{t\rightarrow \infty}f(t)=\lim _{s \rightarrow 0} s F(s)
t→∞limf(t)=s→0limsF(s)
可以根据证明初值定理证明时得到的公式
s
F
(
s
)
=
f
(
0
+
)
+
∫
0
+
∞
d
f
(
t
)
d
t
e
−
s
t
d
t
s F(s) =f\left(0_{+}\right)+\int_{0_{+}}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \mathrm{e}^{-s t} \mathrm{~d} t
sF(s)=f(0+)+∫0+∞dtdf(t)e−st dt
令 s → 0 s\rightarrow 0 s→0 可以得证.
文章首发于公众号 振动信号研究所