1. YOLOv5 的背景与发展
YOLOv5 由 Ultralytics 团队开发,虽然其命名为 YOLOv5,但实际上它并不是由原始的 YOLO 创始团队(Joseph Redmon)开发的,而是一个社区驱动的项目,专注于提供一个灵活、易用且高效的目标检测解决方案。YOLO 系列的设计理念是通过单个神经网络实现实时目标检测,这种方法使得 YOLO 在速度和准确性之间达成了良好的平衡。
2. YOLOv5 的主要特点
-
模型变体:YOLOv5 提供了多个模型变体(YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x),用户可以根据需求选择最适合的模型大小。例如,YOLOv5s 是最小的模型,适合资源受限的环境,而 YOLOv5x 是最大、最准确的版本。
-
优化的训练流程:YOLOv5 支持混合精度训练(Automatic Mixed Precision, AMP),可以在不牺牲模型性能的前提下,加快训练速度并减少显存占用。
-
增强的数据增强技术:通过使用 Mosaic 数据增强,YOLOv5 可以在训练阶段将多个图像拼接成一张,从而增加模型对不同场景和对象的鲁棒性。
-
支持自定义数据集:用户可以很方便地使用自己的数据集进行训练,YOLOv5 提供了清晰的格式和指南来标注数据。
3. YOLOv5 的架构细节
-
Backbone:YOLOv5 的主干网络使用 CSPNet(Cross St