- 博客(40)
- 收藏
- 关注
原创 YOLOv10:实时端到端目标检测
本文首先提出了一种基于一致性对偶指派的YOLO无NMS训练算法,该算法在保证训练性能的同时,降低了推理延迟。此外,本文还介绍了基于效率-精度驱动的YOLO整体模型设计策略。从效率和精度两个角度对YOLO的各个组件进行了全面优化,大大降低了计算开销,增强了性能。我们努力的成果是推出了新一代的YOLO系列,用于实时端到端目标检测,称为YOLOv 10。大量的实验表明,YOLOv 10在不同的模型尺度上都能达到最高的性能和效率。
2024-09-02 09:45:32 1340
原创 HIC-YOLOv5:改进的YOLOv5用于小对象检测
HICYOLOv 5来解决上述问题。首先,添加专用于小对象的附加预测头,以提供更高分辨率的特征图,从而实现更好的预测。其次,在脊柱和颈部之间采用对合块来增加特征图的通道信息;此外,该算法在骨干网末端引入了CBAM注意机制,不仅降低了计算开销,而且在信道域和空域都能突出重要信息.
2024-09-01 11:30:00 673
原创 TPH-YOLOv5:基于Transformer预测头的改进YOLOv5,用于无人机捕获场景的目标检测
提出了TPH-YOLOv5。在YOLOv5的基础上,增加了一个预测头来检测不同尺度的目标。然后用Transformer Prediction Heads(TPH)代替原有的预测头,探索自注意机制的预测潜力。还集成了卷积块注意力模型(CBAM),用来发现密集对象场景中的注意力区域。为了实现所提出的TPH-YOLOv 5的更多改进,提供了一些有用的策略,如数据增强,多尺度测试,多模型集成和使用额外的分类器。设计了跨层非对称Transformer(CA-Trans)来代替额外的预测头,同时保持该预测头的知识。
2024-09-01 09:00:00 1191
原创 MFO-Net:一种用于无人机图像目标检测的多尺度特征优化网络
提出了一种多尺度特征优化网络MFO-Net。设计了三个关键模块:特征优化融合模块、多尺度局部特征聚合模块和特征增强模块。FOF模块通过学习逐像素位移,增强了不同层次上具有不一致上下文的特征融合,促进了更有效的特征融合,从而进一步有助于聚焦和捕获关于小物体的关键信息。MLFA模块通过多分支条带卷积块聚合更丰富的上下文信息,FE模块提取更丰富的梯度流信息,抑制不相容信息,增强特征表示能力。
2024-08-31 10:01:03 906
原创 尺度和位置敏感的红外小目标检测
提出了一种新的尺度和位置敏感(SLS)损失来解决现有损失的局限性,有助于检测器区分不同尺度和位置的目标;设计了一个简单的面向普通U-Net的多尺度头(MSHNet),它为每个输入产生多尺度预测。通过将SLS损失应用于预测的每个尺度,以更少的时间消耗实现了SOTA性能。
2024-08-31 09:14:57 1241
原创 CEASC:基于全局上下文增强的自适应稀疏卷积网络在无人机图像上的快速目标检测
提出了一种新的全局上下文增强自适应稀疏卷积网络(CEASC)。该算法首先利用全局背景统计量代替稀疏采样特征统计量,构建了背景增强的组归一化(CE-GN)层,然后设计了一种自适应的多层掩膜策略,在不同尺度下生成最优的掩膜比例,以获得更紧凑的前景覆盖,提高了算法的准确性和效率。
2024-08-30 10:09:06 930
原创 MISF:基于多级交互式连体滤波的高保真图像修复
提出了一种新的滤波技术,即,多级交互式连体滤波(MIF),它包含两个分支:核预测分支(KPB)和语义图像滤波分支(SIFB)。这两个分支是交互连接的:SIFB为KPB提供多层次特征,而KPB为SIFB预测动态核。该方法充分利用了语义和图像级填充的有效性,实现了高保真修复。
2024-08-30 09:08:22 633
原创 Lama:基于傅立叶卷积的分辨率鲁棒性大掩模修复
为了缓解修复网络和损失函数都缺乏有效的感受野这个问题,提出了大掩模修复(LaMa)。LaMa基于一种新的修复网络架构,该架构使用快速傅立叶卷积(FFC),具有图像范围的感受野;高感受野感知损失;大型训练掩码,释放前两个组件的潜力。
2024-08-29 10:01:33 878
原创 基于部分注意力的人脸识别
分为三个模块:提取、注意力和聚合。提取模块从输入图像中提取特征图F ∈ R20×20×1024和注意图A ∈ R20×20×K,K表示注意图的个数。在Attend模块中,使用重新校准的注意力图将特征图汇集成K个中间特征向量。聚合模块将这些中间特征向量映射到一个联合特征空间,在该空间中得到最终的特征向量f ∈ R256。
2024-08-29 09:35:59 492
原创 重新思考基于知识蒸馏的人脸识别的特征
师生之间的内在差距和学生无法再现教师的特征空间之间建立了联系。反蒸馏,然后提出作为一种补救措施的问题。此外,通过设计更多的轻量级学生代理来改进该策略,进一步提高了反蒸馏的结果,缩小了内在差距。
2024-08-28 09:38:46 751
原创 ICD-Face:用于人脸识别的类内紧致蒸馏算法
在ICD-Face中,首先提出计算教师和学生模型的相似度分布,然后引入特征库来构造足够多的高质量的正对。然后,估计教师和学生模型的概率分布,并引入相似性分布一致性(SDC)损失来提高学生模型的类内紧致性。
2024-08-28 09:09:13 376
原创 联合整体与蒙面人脸识别
本文通过补丁重建的代理任务来初始化模型参数,并观察到 ViT 主干网表现出改进的训练稳定性和令人满意的人脸识别性能。 除了训练稳定性之外,还提出了两种基于提示的策略,将整体和蒙面人脸识别集成在一个框架中,即 FaceT。
2024-08-27 10:00:31 861
原创 用于低质量蒙面人脸识别的一致子决策网络
提出了一种利用由多个dropout块组成的在线一致性评估结构来获得对应于人脸不同区域的子决策网络,以获得对应于不同面部区域的子决策,并通过加权双向KL散度来约束子决策,使网络集中在上面而没有遮挡的面部。此外,还进行知识蒸馏,以驱动蒙面人脸嵌入接近原始数据分布,以减轻信息丢失。实验表明,所提出的方法在公共蒙面人脸识别数据集(即 RMFD、MFR2 和 MLFW)上的性能优于基线。
2024-08-27 09:44:30 573
原创 ViT(Vision Transformer)
ViT是一种将Transformer应用于图像领域的模型,它通过对图像块进行编码和注意力机制的处理,实现了对图像的表示和分类。而Transformer更广泛地应用于自然语言处理任务,它通过对序列数据的编码和注意力机制的处理,实现了对文本的建模和处理。
2024-08-26 15:11:02 1209
原创 通过模板级知识蒸馏进行掩模不变人脸识别
在本文中,提出了一种口罩不变的人脸识别解决方案,该解决方案不仅旨在构建有判别性的人脸嵌入,还将这一目标扩展到构建无论是否佩戴口罩都保持身份内相似性的嵌入。这种新颖的方法,即 MaskInv,基于通过身份分类学习共同学习在戴着面具的情况下区分身份,并通过来自教师网络的嵌入级 KD 学习为相同身份的蒙面和非蒙面面孔生成类似的嵌入。所提出的解决方案优于当前的 SOTA 方法。此外,提出的解决方案在验证非蒙面人脸时保持了高水平的准确性。
2024-08-26 10:05:17 603
原创 Latent-OFER:使用潜在向量进行检测、屏蔽和重建,以实现遮挡的面部表情识别
所提出的方法Latent-OFER可以检测遮挡,将面部被遮挡的部分恢复为未被遮挡的部分,并识别它们,从而提高 FER 准确性。
2024-08-24 10:48:29 619
原创 局部加全局视角遮挡人脸表情识别方法
利用主干网络提取表情特征图,将表情特征图裁剪成 多个区域块,利用局部 Patch 注意力单元通过自适应计算局部特征的注意力权重来感知被遮挡的区域,提取 表情局部特征。同时,表情特征图转换成 Patch 块,通过 Patch 级和 Token 级注意力池化的视觉 Transformer, 从全局角度捕获 Patch 块之间的相互作用和相关性。引导模型强调最具区别性的特征,而忽略遮挡减少不相关特征的影响。
2024-07-23 19:29:42 650
原创 CoReFace:深度人脸识别的样本引导对比正则化
人脸识别对比正则化(CoReFace)(损失函数),将图像级正则化应用于特征表示学习。 具体来说,采用样本引导对比学习直接利用图像-图像关系来规范训练。 为了将对比学习整合到人脸识别中,通过增加嵌入而不是图像,以避免图像质量下降。 然后,通过结合自适应边距和监督对比掩模,提出了一种新颖的表示分布对比损失,以生成稳定的损失值并避免与分类监督信号的冲突。 最后,通过探索新的配对耦合协议来发现并解决对比学习中的语义重复信号问题。
2024-04-26 21:50:06 1079 1
原创 UniFace:深度人脸识别的统一交叉熵损失
设计了用于人脸识别模型训练的UCE(统一交叉熵)损失,它建立在所有正样本与类的相似性应大于负样本的重要约束之上。
2024-03-30 21:25:41 1146
原创 基于注意力机制和损坏特征掩蔽的遮挡人脸识别
提出了一种基于注意力机制和损坏特征掩蔽的新型遮挡人脸识别方法,可以实现更高的识别精度;为了提取更有效的面部特征,通过将注意力机制(BAM)嵌入残差网络来构建特征提取网络;设计掩模生成器,利用特征金字塔网络底层的遮挡信息来定位和删除损坏的特征。
2024-03-26 19:25:32 1131
原创 基于深度学习的口罩人脸识别研究进展
MTCNN模型训练输入的所有图像都是正样本(戴口罩的照片),没有负样本作为模型输入。在后续的识别任务模块中,导入MTCNN模型检测结果,对特征点进行编码比较进行识别。
2024-03-17 15:42:27 1277 1
原创 具有生成数据增强和域约束排名的蒙面人脸识别
提出了一种基于 MFSR(数据集) 的身份感知掩模 GAN网络(IAMGAN),用于从标准全脸图像生成合成掩模面部图像,作为训练数据短缺的补救措施; 一种新颖的域约束排名损失旨在学习蒙面人脸识别的判别性深层特征。
2024-03-07 10:44:54 489 1
原创 基于成对差分连体网络掩模学习的遮挡鲁棒人脸识别
提出了一种掩模学习策略来查找并丢弃识别中损坏的特征元素。首先,使用设计的成对差分孪生网络(PDSN),利用遮挡和无遮挡人脸对的顶部卷积特征之间的差异,可以明确地找到深度 CNN 模型中被遮挡的面部块和损坏的特征元素之间的对应关系,建立掩模字典。该字典的每一项都捕获被遮挡的面部区域和损坏的特征元素之间的对应关系,这被称为特征丢弃掩模(FDM)。当处理具有随机部分遮挡的人脸图像时,通过组合相关字典项来生成其特征丢弃掩模(FDM),然后将其与原始特征相乘,以从识别中消除那些损坏的特征元素。
2024-03-01 11:14:09 723 1
原创 用于自监督视觉预训练的屏蔽特征预测
提出了用于视频模型自监督预训练的掩模特征预测(MaskFeat)。首先随机屏蔽输入序列的一部分,然后预测屏蔽区域的特征。研究了五种不同类型的特征,发现定向梯度直方图(HOG)(一种手工制作的特征描述符),在性能和效率方面效果特别好。此方法可以学习丰富的视觉知识并驱动基于 Transformer 的大规模模型。
2024-02-26 19:19:36 634 1
原创 使用潜在向量进行检测、屏蔽和重建以进行遮挡的面部表情识别
所提出的方法 LatentOFER 可以检测遮挡,将面部被遮挡的部分恢复为未被遮挡的部分,并识别它们,从而提高 FER 准确性。该方法涉及三个步骤:首先,基于视觉变换器 (ViT) 的遮挡块检测器通过使用支持向量数据描述算法仅训练来自未遮挡块的潜在向量来掩盖遮挡位置。其次,混合重建网络使用基于视觉变换器ViT和卷积神经网络 (CNN) 将遮蔽位置生成为完整图像。最后,表达相关的潜在向量提取器通过应用基于 CNN 的类激活图来检索并使用来自所有潜在向量的表达相关信息。
2024-02-03 16:15:10 1158 1
原创 人脸识别的多样化和稀疏关注对姿势变化和遮挡具有鲁棒性
1.提出了成对自我对比注意力来强制模型提取不同的局部特征;2.设计注意力稀疏性损失是为了鼓励注意力图中的稀疏反应,阻止对分散注意力的区域的强调,同时鼓励对有区别的面部部位的关注。
2024-02-01 22:08:23 1403 1
原创 用于遮挡下少镜头人脸识别的双流原型学习网络
在本文中,提出了一个双流框架来学习 FSFRO 问题的最优类原型。所提出的 TSPLN 可以通过同时考虑不同支持图像的质量以及与查询图像的相关性来学习不同支持图像的自适应权重。为了实现这一目标,引入了预训练的可转移相似关系网络 以支持为中心的流,以减少遮挡图像对课堂原型学习的负面影响。还为中级特征设计了一个对齐模块,它可以在构造类原型时关注与查询图像更相关的特征。此外,高级特征之间的相似性的一致性约束使学习到的原型更加可靠。
2024-01-31 17:46:26 673
原创 用于遮挡人脸识别的局部感知通道丢弃
(1)提出了一种新颖而优雅的遮挡模拟方法,通过在某些精心选择的通道中丢弃一组神经元的激活,每个特征通道被强制响应局部面部区域;(2)设计了一个辅助空间注意模块,通过学习通道注意向量来重新加权特征通道,从而提高非遮挡区域的贡献。
2024-01-28 17:38:16 1059
原创 用于准确蒙面人脸识别的自我约束三元组损失
提出了一种提高蒙面人脸识别性能的解决方案,在现有人脸识别模型之上运行的嵌入去掩模模型Embedding Unmasking Model(EUM);提出了一种新颖的损失函数,即自约束三元组Self-restrained Triplet(SRT),它能使 EUM 能够生成与相同身份的未蒙面面孔类似的嵌入。SRT 与三元组损失具有相同的学习目标,即它使模型能够最小化真实对之间的距离并最大化非真实者对之间的距离。
2024-01-27 10:38:05 905
原创 Masked Face Recognition Using Deep Learning: A Review
论文地址:https://www.mdpi.com/2079-9292/10/21/2666
2024-01-26 10:33:17 2266 1
原创 人脸遮挡识别的研究挑战和方向
人脸遮挡识别的许多挑战和有前途的研究方向:分类 MFR、数据集变化、非合作 MFR、学习掩模去除和面部恢复、3D 面部重建、算法复杂度、MFR竞赛
2024-01-25 09:41:52 750
原创 FaceNet: 人脸识别和聚类的统一嵌入
网络由批量输入层和深度 CNN 组成,后跟 L2 归一化,从而产生人脸嵌入,然后是训练期间的三元组损失。
2024-01-23 09:27:29 750 1
原创 MSML:通过基于多尺度分割的人脸识别掩模学习增强遮挡鲁棒性
本文提出了一种新颖的基于多尺度分割的掩模学习(MSML)网络,它由人脸识别分支(FRB)、遮挡分割分支(OSB)和分层精细特征掩模(FM)算子组成。
2024-01-17 20:17:15 988
原创 DeepFace-EMD:在给定已知面孔图库的情况下识别查询图像中的人
第 1 阶段:排名,根据图像与预训练特征提取器的最后一个线性层特征空间中给定查询的成对余弦相似度对图像进行排名;第 2 阶段:重新排名,我们通过使用 EMD 计算图像对的patch相似度,对第 1 阶段的前 k 个候选者进行重新排名。
2024-01-17 11:27:24 535
原创 基于深度学习的表面缺陷检测方法综述
近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中。这篇文章对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景。这篇文章探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集。最后,对表面缺陷检测方法进行了总结。
2023-11-22 09:43:28 2659 2
原创 Nesterov加速梯度下降算法
Nesterov加速梯度下降算法由两步组成:第一步沿着前两步的计算方向计算一个新点,第二步在该新点处做一步近似点梯度迭代。
2023-11-18 21:44:50 942
原创 YOLOv5模型简述
Yolov5是一种高效、准确的目标检测算法,它在模型结构和训练策略上进行了改进并取得了很好的性能。它已经成为目标检测领域的研究热点,并得到了广泛的应用和推广。
2023-11-17 20:27:30 19028 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人