密码学数学基础第一讲

整数的因子分解


一、带余除法和整除法

  定理1.1 设 a,b 是两个整数,其中b>0,则存在唯一的整 数q和r使得 ,

a=qb+r,
其中的除法称为带余除法或者欧几里得除法。q称为a被b除得的不完全商,r称为余数。

  若式子中,r=0,则称b整除a,记为b|a。b称为a的 真因子,a是b的倍数。

   整除的性质, (b>0,c>0)

     1. c | b , b | a => c | a ;
     2. b | a <=> bc | ac ;
     3. 对任意整数x,y有: c | a , c | b <=> c | (ax+by)


二、整数的表示

  n 的 a 进制表示 n = r t a t r_ta^t rtat+ r t − 1 a t − 1 r_{t-1}a^{t-1} rt1at1+……+ r 2 a 2 r_2a^2 r2a2+ r 1 a r_1a r1a+ r 0 r_0 r0
  其中,a 是大于1的整数,n 是任一整数。

十六进制二进制十六进制二进制
0000081000
1000191001
20010A1010
30011B1011
40100C1100
50101D1101
60110E1110
70111F1111

三、最大公因子与辗转相除法

  定理1.2 设a,b,c为三个正整数,且 a = bq + c , 其中 q 为整数,则 (a,b) = (b,c)。

  求(a,b):辗转相除法

a = b q 1 q_1 q1 + r 1 r_1 r1, 0< r 1 r_1 r1<|b|,
b = r 1 q 2 r_1q_2 r1q2 + r 2 r_2 r2, 0< r 2 r_2 r2< r 1 r_1 r1,
······
r k − 1 r_{k-1} rk1 = r k q k + 1 r_kq_{k+1} rkqk+1 + r k + 1 r_{k+1} rk+1, 0< r k + 1 r_{k+1} rk+1< r k r_k rk,
······
r n − 3 r_{n-3} rn3 = r n − 2 q n − 1 r_{n-2}q_{n-1} rn2qn1 + r n − 1 r_{n-1} rn1, 0< r n − 1 r_{n- 1} rn1< r n − 2 r_{n-2} rn2
r n − 2 r_{n-2} rn2 = r n − 1 q n r_{n-1}q_n rn1qn + r n r_n rn, 0< r n r_n rn< r n − 1 r_{n-1} rn1,
r n − 1 r_{n-1} rn1 = r n q n + 1 r_nq_{n+1} rnqn+1
结论:(a , b) = r n r_n rn

  由于b是固定的,而且|b|> r 1 r_1 r1> r 2 r_2 r2>···,所以等式有限。

  定理1.3 对任意两个正整数a,b,存在整数x和y,使得 (a,b)= xa + yb。
  从倒数第二个等式开始倒推,用该等式的整数 r i r_i ri 来表示余数 r n r_n rn

r n r_n rn = r n − 2 r_{n-2} rn2 - r n − 1 q n r_{n-1}q_n rn1qn,(此时整数为 r n − 1 r_{n-1} rn1 r n − 2 r_{n-2} rn2
再代入上一个等式中的 r n − 1 r_{n-1} rn1 r n − 1 r_{n-1} rn1 = r n − 3 r_{n-3} rn3 - r n − 2 q n − 1 r_{n-2}q_{n-1} rn2qn1
得到, r n r_n rn = - r n − 3 q n r_{n-3}q_n rn3qn + r n − 2 ( q n q n − 1 + 1 ) r_{n-2}(q_nq_{n-1}+1) rn2(qnqn1+1), (此时整数变成 r n − 2 r_{n-2} rn2 r n − 3 r_{n-3} rn3
继续带入再上个等式的余数,直到整数变为a,b,即得所求。

  (793,2769)= 13 = 793×7 + 2769 × (-2),可自行验证。

  推论1.1 设d是a和b的任一公因子,则 d | (a , b) 。

  定义1.2 a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an是 n 个整数。如果整数 d 是它们中 每一个数的因数,那么就称 d 为公因数。所有公因数中最大的 一个正整数为最大公因数

  定理1.4 a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an是 n 个整数。令
    ( a 1 a_1 a1, a 2 a_2 a2)= d 1 d_1 d1,( d 1 d_1 d1, a 3 a_3 a3)= d 2 d_2 d2,···,( d n − 2 d_{n-2} dn2, a n a_n an)= d n − 1 d_{n-1} dn1
  则( a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an)= d n − 1 d_{n-1} dn1,因而存在整数 u 1 u_1 u1, u 2 u_2 u2, ···, u n u_n un,使得
     a 1 u 1 a_1u_1 a1u1+ a 2 u 2 a_2u_2 a2u2+···+ a n u n a_nu_n anun =( a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an

四、整数的唯一分解定理

  定理1.5 设p为素数,a,b为整数,若p | ab,则 p | a 或 p | b 。

  定理1.6 (唯一分解定理)任一不为1的正整数n均可以 唯一地表示为

n = p 1 α 1 p 2 α 2 ⋅ ⋅ ⋅ p s α s p_1^{α_1}p_2^{α_2}···p_s^{α_s} p1α1p2α2psαs

  其中, p 1 p_1 p1 p 2 p_2 p2≤···≤ p s p_s ps α i α_i αi 为自然数,i=1,2,···,s。

  定义1.3 a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an是 n 个整数。如果整数 m 是它们中 每一个数的倍数,那么就称 m 为公倍数。所有公倍数中最小的 一个正整数为最小公倍数

  定理1.7 a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an是 n 个非零整数。令
    [ a 1 a_1 a1, a 2 a_2 a2] = m 1 m_1 m1,[ m 1 m_1 m1, a 3 a_3 a3]= m 2 m_2 m2,···,[ m n − 2 m_{n-2} mn2, a n a_n an]= m n − 1 m_{n-1} mn1
  则( a 1 a_1 a1, a 2 a_2 a2, ···, a n a_n an)= m n − 1 m_{n-1} mn1

  定理1.8 设a,b为两个正整数,则 [a , b] = a b ( a , b ) \frac{ab}{(a , b)} (a,b)ab


五、素数

  定理1.9 素数有无穷多个。

  Π(x) 表示不超过x的素数个数,有Π(x) = x l n x \frac{x}{lnx} lnxx

  定理1.10 设n>1,若 a n − 1 a^n-1 an1为素数,则 a=2,n为素数。

  定义1.4 整数 M n M_n Mn= 2 n − 1 2^n-1 2n1 称为第n个Mersenne数,当 M p M_p Mp = 2 p − 1 2^p-1 2p1 为素数时, M p M_p Mp称为Mersenne素数。

  定理1.11 2 m + 1 2^m+1 2m+1为素数,则 m一定是2的方幂。

  定义1.5 形如 F n = 2 2 n + 1 Fn=2^{2^n}+1 Fn=22n+1的数称为Fermat数,如果此数是素数,则称为Fermat素数。

  定理1.12 设 n 是一个大于1的正整数,如果对所有小于或等于 n \sqrt n n 的素数p,都有 p 不能整除 n ,则n一定是素数。


六、多项式的整除

  定义1.6 若f(x)没有真因子,则称其为不可约多项式。

  定理1.12 设f(x),g(x) ∈Q[x],(f(x),g(x) )是f(x)和g(x) 的最大公因子,则存在m(x),n(x) ∈Q[x],使得

(f(x),g(x) )=m(x)f(x)+n(x)g(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值