【NOI2008】BZOJ1061志愿者招募

1061: [Noi2008]志愿者招募
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 3028 Solved: 1872
Description
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
Input
第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。
Output
仅包含一个整数,表示你所设计的最优方案的总费用。
Sample Input
3 3
2 3 4
1 2 2
2 3 5
3 3 2
Sample Output
14
HINT
招募第一类志愿者3名,第三类志愿者4名 30%的数据中,1 ≤ N, M ≤ 10,1 ≤ Ai ≤ 10; 100%的数据中,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。
这道题正确的解法是构造网络,求网络最小费用最大流,但是模型隐藏得较深,不易想到。构造网络是该题的关键,以下面一个例子说明构图的方法和解释。
例如一共需要4天,四天需要的人数依次是4,2,5,3。有5类志愿者,如下表所示:
种类 1 2 3 4 5
时间 1-2 1-1 2-3 3-3 3-4
费用 3 4 3 5 6
设雇佣第i类志愿者的人数为X[i],每个志愿者的费用为V[i],第j天雇佣的人数为P[j],则每天的雇佣人数应满足一个不等式,如上表所述,可以列出
P[1] = X[1] + X[2] >= 4
P[2] = X[1] + X[3] >= 2
P[3] = X[3] + X[4] +X[5] >= 5
P[4] = X[5] >= 3
对于第i个不等式,添加辅助变量Y[i] (Y[i]>=0) ,可以使其变为等式
P[1] = X[1] + X[2] - Y[1] = 4
P[2] = X[1] + X[3] - Y[2] = 2
P[3] = X[3] + X[4] +X[5] - Y[3] = 5
P[4] = X[5] - Y[4] = 3
在上述四个等式上下添加P[0]=0,P[5]=0,每次用下边的式子减去上边的式子,得出
① P[1] - P[0] = X[1] + X[2] - Y[1] = 4
② P[2] - P[1] = X[3] - X[2] -Y[2] +Y[1] = -2
③ P[3] - P[2] = X[4] + X[5] - X[1] - Y[3] + Y[2] =3
④ P[4] - P[3] = - X[3] - X[4] + Y[3] - Y[4] = -2
⑤ P[5] - P[4] = - X[5] + Y[4] = -3
观察发现,每个变量都在两个式子中出现了,而且一次为正,一次为负。所有等式右边和为0。接下来,根据上面五个等式构图。
每个等式为图中一个顶点,添加源点S和汇点T。
如果一个等式右边为非负整数c,从源点S向该等式对应的顶点连接一条容量为c,权值为0的有向边;如果一个等式右边为负整数c,从该等式对应的顶点向汇点T连接一条容量为c,权值为0的有向边。
如果一个变量X[i]在第j个等式中出现为X[i],在第k个等式中出现为-X[i],从顶点j向顶点k连接一条容量为∞,权值为V[i]的有向边。
如果一个变量Y[i]在第j个等式中出现为Y[i],在第k个等式中出现为-Y[i],从顶点j向顶点k连接一条容量为∞,权值为0的有向边。
构图以后,求从源点S到汇点T的最小费用最大流,费用值就是结果。
根据上面的例子可以构造出如下网络,红色的边为每个变量X代表的边,蓝色的边为每个变量Y代表的边,边的容量和权值标已经标出(蓝色没有标记,因为都是容量∞,权值0)。
这里写图片描述
在这个图中求最小费用最大流,流量网络如下图,每个红色边的流量就是对应的变量X的值。
这里写图片描述
所以,答案为43+23+3*6=36。
上面的方法很神奇得求出了结果,思考为什么这样构图。我们将最后的五个等式进一步变形,得出以下结果
① - X[1] - X[2] + Y[1] + 4 = 0
② - X[3] + X[2] + Y[2] - Y[1] - 2 = 0
③ - X[4] - X[5] + X[1] + Y[3] - Y[2] + 3 = 0
④ X[3] + X[4] - Y[3] + Y[4] - 2 = 0
⑤ X[5] - Y[4] - 3 = 0
可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡。每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负的常数是流向附加汇点的流量。因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式。而我们还要求noi_employee_3最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流。
由于建图太神,只能%rush出正解的神犇。。
当时知道费用流也不会建图,等学完线性规划update此篇博文。。
附上本蒟蒻的代码:

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define T 1002
#define inf 0x7fffffff
int n,m,cnt=1,head,tail,dis[10001],h[10001],q[10001],ans=0,sum;
bool mark[10001],vis[10001];
struct kx
{
    int to,next,v,c;
}edge[50001];

int read()
{
    int w=0,s=1; char ch=getchar();
    while (ch<'0' || ch>'9')
      {
        if (ch=='-') s=-1;
        ch=getchar();
      }
    while (ch>='0' && ch<='9')
      w=w*10+ch-'0',ch=getchar();
    return w*s;
}

void add(int u,int v,int w,int cost)
{
    cnt++,edge[cnt].next=h[u],h[u]=cnt,edge[cnt].to=v,edge[cnt].v=w,edge[cnt].c=cost;
    cnt++,edge[cnt].next=h[v],h[v]=cnt,edge[cnt].to=u,edge[cnt].v=0,edge[cnt].c=-cost;
}

bool spfa()
{
    memset(vis,false,sizeof(vis));
    for (int i=0;i<=T;i++)
      dis[i]=inf;
    head=0;
    tail=1;
    q[0]=T;
    vis[T]=true;
    dis[T]=0;
    while (head<tail)
      {
        int now=q[head];
        head++;
        vis[now]=false;
        for (int i=h[now];i;i=edge[i].next)
          if (edge[i^1].v && dis[now]-edge[i].c<dis[edge[i].to])
            {
              dis[edge[i].to]=dis[now]-edge[i].c;
              if (!vis[edge[i].to])
                {
                  vis[edge[i].to]=true;
                  q[tail++]=edge[i].to;
                }
            }
      }
    return dis[0]!=inf;
}

int dfs(int x,int f)
{
    int w,used=0;
    mark[x]=true;
    if (x==T)
      return f;
    for (int i=h[x];i;i=edge[i].next)
      if (dis[edge[i].to]==dis[x]-edge[i].c && edge[i].v && !mark[edge[i].to])
        {
            w=f-used;
            w=dfs(edge[i].to,min(w,edge[i].v));
            ans+=w*edge[i].c;
            edge[i].v-=w;
            edge[i^1].v+=w;
            used+=w;
            if (used==f)
              return f;
        }
    return used;
}

int main()
{
    int i,l=0,r,x,y,c;
    n=read(),m=read();
    for (i=1;i<=n;i++)
      {
        r=read();
        x=r-l;
        if (x>0) add(0,i,x,0);
        else add(i,T,-x,0);
        add(i+1,i,inf,0);
        l=r;
      }
    add(n+1,T,l,0);
    for (i=1;i<=m;i++)
      {
        x=read(),y=read(),c=read();
        add(x,y+1,inf,c);
      }
    while (spfa())
      {
        mark[T]=true;
        while (mark[T])
          {
            memset(mark,false,sizeof(mark));
            sum+=dfs(0,0x7fffffff);
          }
      }
    printf("%d",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值