【数学建模】图论模型(基础理论+最大流与最小费用流问题)

本文介绍了图论的基本概念,包括无向图、有向图、简单图、完全图、赋权图和顶点度数。讨论了连通图、强连通图以及道路与回路的概念。此外,还深入讲解了图的表示方法,如关联矩阵和邻接矩阵。文章进一步探讨了最大流问题,包括可行流的条件以及如何通过线性规划求解最大流。最后,引入了最小费用流问题,阐述了在网络流中考虑费用的优化目标。

图论模型

基础理论

1.无向图与有向图
  • 有向图的边称为弧,有向图一般记为 D=(V,A)D=(V,A)D=(V,A),其中 VVV 为顶点集,AAA 为弧集。
  • 边的表示 (vi,vj)(v_i,v_j)(vi,vj),弧的表示 <vi,vj><v_i,v_j><vi,vj>
2.简单图与完全图
  • 无环且无重边的图称为简单图。
    在这里插入图片描述
  • 上图中,e2e_2e2e3e_3e3 为重边, e5e_5e5 为环。
  • 任意两点均相邻的简单图称为完全图。含 nnn 个顶点的完全图记为 KnK_nKn.
3.赋权图
  • 赋权图中的权可以是距离、费用、时间、效益、成本等。
4.顶点的度
  • 出度记为 d+(v)d^+(v)d+(v),入度记为 d−(v)d^-(v)d(v).
  • 度数为奇数的顶点称为奇顶点,度为偶数的顶点称为偶顶点。

定理 给定图 G=(V,E)G=(V,E)G=(V,E),所有顶点的度数之和是边数的2倍,即
∑v∈Vd(v)=2∣E∣ \sum_{v \in V} d(v)=2|E| vVd(v)=2∣E

5.子图
  • 如果 G1G_1G1G2G_2G2 的子图,且 V1=V2V_1=V_2V1=V2,则称 G1G_1G1G2G_2G2生成子图
6.道路与回路
  • W=v0e1v1e2...ekvkW=v_0e_1v_1e_2...e_kv_kW=v0e1v1e2...ekvk,路长为边的个数 kkk
  • 各边相异的道路称为迹,各顶点相异的道路称为轨道。
  • 以顶点 u,vu,vu,v 分别为起点和终点的最短轨道之长为顶点 u,vu,vu,v 的距离。
7.连通图与非连通图
  • 如果无向图 GG
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值