目录
题目链接:2131. 连接两字母单词得到的最长回文串 - 力扣(LeetCode)
该题目要求从给定双字母单词数组中构造最长回文串。
解题思路包括:
1)用哈希表统计单词频率;
2)处理互为反转的非回文单词对,每对贡献4字符长度;
3)处理自身回文单词,偶数次每对贡献4字符,奇数次可单独作为中心贡献2字符。
算法时间复杂度O(n),空间复杂度O(n),其中n为单词数量。最终结果为所有配对贡献和加上可能的中心贡献。示例解法提供了Java和C++实现,通过合理配对和中心处理最大化回文串长度。
题目链接:2131. 连接两字母单词得到的最长回文串 - 力扣(LeetCode)
注:下述题目描述和示例均来自力扣
题目描述
给你一个字符串数组 words
。words
中每个元素都是一个包含 两个 小写英文字母的单词。
请你从 words
中选择一些元素并按 任意顺序 连接它们,并得到一个 尽可能长的回文串 。每个元素 至多 只能使用一次。
请你返回你能得到的最长回文串的 长度 。如果没办法得到任何一个回文串,请你返回 0
。
回文串 指的是从前往后和从后往前读一样的字符串。
示例 1:
输入:words = ["lc","cl","gg"] 输出:6 解释:一个最长的回文串为 "lc" + "gg" + "cl" = "lcggcl" ,长度为 6 。 "clgglc" 是另一个可以得到的最长回文串。
示例 2:
输入:words = ["ab","ty","yt","lc","cl","ab"] 输出:8 解释:最长回文串是 "ty" + "lc" + "cl" + "yt" = "tylcclyt" ,长度为 8 。 "lcyttycl" 是另一个可以得到的最长回文串。
示例 3:
输入:words = ["cc","ll","xx"] 输出:2 解释:最长回文串是 "cc" ,长度为 2 。 "ll" 是另一个可以得到的最长回文串。"xx" 也是。
提示:
1 <= words.length <=
words[i].length == 2
words[i]
仅包含小写英文字母。
解法一:
核心点就是:合理的通过互为反转的单词对和自身回文的单词,最大化回文串的长度。具体思路是这样的:
- 统计单词频率:我们用哈希表记录每个单词的出现次数。
- 处理互为反转的非回文对:遍历所有单词,若存在互为反转的非回文单词对(如"lc"和"cl"),那么每对贡献4个字符的长度。但是注意了,配对后需更新哈希表中两者的计数以避免重复计算。
- 处理自身回文的单词:统计所有自身回文的单词(如"gg"),计算他们™可以成对使用的次数(偶数每对贡献4字符)奇数次出现的自身回文单词,可额外选一个作为中心,贡献2字符长度。
- 综合结果:将互为反转对的贡献和自身回文的贡献相加,若有中心则加2。
Java写法:
import java.util.*;
class Solution {
public int longestPalindrome(String[] words) {
Map<String, Integer> count = new HashMap<>();
for (String word : words) {
count.put(word, count.getOrDefault(word, 0) + 1);
}
int maxLength = 0;
// 处理互为反转的非回文对
for (String s : new ArrayList<>(count.keySet())) {
if (s.charAt(0) == s.charAt(1)) continue; // 跳过自身回文的单词
String rev = new StringBuilder(s).reverse().toString();
if (count.containsKey(rev) && count.get(s) > 0) {
int pairs = Math.min(count.get(s), count.get(rev));
maxLength += pairs * 4;
count.put(s, count.get(s) - pairs);
count.put(rev, count.get(rev) - pairs);
}
}
// 处理自身回文的单词
boolean hasCenter = false;
for (String s : count.keySet()) {
if (s.charAt(0) == s.charAt(1)) {
int cnt = count.get(s);
maxLength += (cnt / 2) * 4;
if (cnt % 2 == 1) {
hasCenter = true;
}
}
}
if (hasCenter) {
maxLength += 2;
}
return maxLength;
}
}
C++写法:
#include <vector>
#include <string>
#include <unordered_map>
#include <algorithm>
using namespace std;
class Solution {
public:
int longestPalindrome(vector<string>& words) {
unordered_map<string, int> count;
for (auto& word : words) {
count[word]++;
}
int max_length = 0;
bool has_center = false;
// 处理互为反转的非回文对
for (auto it = count.begin(); it != count.end(); ) {
string s = it->first;
if (s[0] == s[1]) { // 自身回文暂不处理
++it;
continue;
}
string rev(s.rbegin(), s.rend());
if (count.find(rev) != count.end()) {
int pairs = min(it->second, count[rev]);
max_length += pairs * 4;
count[rev] -= pairs;
it->second -= pairs;
if (count[rev] == 0) {
count.erase(rev);
}
if (it->second == 0) {
it = count.erase(it);
} else {
++it;
}
} else {
++it;
}
}
// 处理自身回文的单词
for (auto& [s, cnt] : count) {
if (s[0] == s[1]) {
max_length += (cnt / 2) * 4;
if (cnt % 2 == 1) {
has_center = true;
}
}
}
if (has_center) {
max_length += 2;
}
return max_length;
}
};
运行时间
时间复杂度和空间复杂度
时间复杂度为 O(n),空间复杂度为 O(n),这里的话 n
是 words
数组的长度。
时间复杂度
-
统计单词频率
遍历所有单词并使用哈希表记录频率,时间复杂度为 O(n)。哈希表的插入和查询操作平均为 O(1)。 -
处理互为反转的单词对
遍历哈希表,对每个单词检查其反转是否存在。每个单词最多被访问一次(避免重复计算),时间复杂度为 O(n)。 -
处理自身回文的单词
再次遍历哈希表,统计自身回文单词的偶数和奇数次出现次数,时间复杂度为 O(n)。
综上,总时间复杂度为 O(n)。
空间复杂度
-
哈希表存储单词频率
最坏情况下需要存储所有单词及其出现次数,空间复杂度为 O(n)。 -
辅助变量
仅使用常数空间存储中间结果(如回文长度、是否包含中心等),空间复杂度为 O(1)。
总结
该题目要求从给定双字母单词数组中构造最长回文串。解题思路包括:1)用哈希表统计单词频率;2)处理互为反转的非回文单词对,每对贡献4字符长度;3)处理自身回文单词,偶数次每对贡献4字符,奇数次可单独作为中心贡献2字符。算法时间复杂度O(n),空间复杂度O(n),其中n为单词数量。最终结果为所有配对贡献和加上可能的中心贡献。示例解法提供了Java和C++实现,通过合理配对和中心处理最大化回文串长度。