卡尔曼滤波

本文深入探讨了卡尔曼滤波的理论基础,包括贝叶斯滤波的原理,阐述了先验概率、后验概率和似然概率的概念,并介绍了卡尔曼滤波算法的详细步骤,包括预测步和更新步。通过对状态方程和观测方程的假设,展示了如何利用卡尔曼增益进行数据融合,以减少不确定性。最后,提供了矩阵形式的卡尔曼滤波公式,适合于实际应用中进行信号处理。
摘要由CSDN通过智能技术生成

1贝叶斯滤波

1.1理论基础

(1)本质:通过贝叶斯公式随机信号处理,从而减小不确定度(即方差)。

(2)随机过程:x1,…,xn为随机变量,但不独立。
主观概率(先验概率)(实验前),
引入外部观测(证据、信息),
得到相对客观的概率(后验概率)(实验后)。

(3)先验概率、后验概率、似然概率
离散举例:温度测量 T 实 际 温 度 、 T m 温 度 计 测 量 温 度 T实际温度、T_m温度计测量温度 TTm
a. 先验概率分布
{ P ( T = 10 ) = 0.8 表 示 实 际 温 度 为 10 的 概 率 为 0.8 P ( T = 11 ) = 0.2 \left\{ \begin{aligned} &P(T=10) = 0.8 表示实际温度为10的概率为0.8 \\ &P(T=11)=0.2 \end{aligned} \right. { P(T=10)=0.8100.8P(T=11)=0.2
b. 温度计测量值 T m T_m Tm
c. 后验概率分布:
P ( T = 10 ∣ T m = 10.3 ) = P ( T m = 10.3 ∣ T = 10 ) ∗ P ( T = 10 ) P ( T m = 10.3 ) P(T=10|T_m=10.3)=\frac{P(T_m=10.3|T=10)*P(T=10)}{P(T_m=10.3)} P(T=10Tm=10.3)=P(Tm=10.3)P(Tm=10.3T=10)P(T=10)
表示在温度计显示为10.3度的条件下,实际温度为10度的概率。
其中, P ( T m = 10.3 ∣ T = 10 ) P(T_m=10.3|T=10) P(Tm=10.3T=10)表示在实际温度为10度的情况下温度计测量为10.3度的概率。似然概率:观测精度/传感器精度;
P ( T m = 10.3 ) P(T_m=10.3) P(Tm=10.3)看作常数 η \eta η

后验= η ∗ 似 然 ∗ 先 验 \eta*似然*先验 η,其中 η = 1 ∑ ( 似 然 ∗ 先 验 ) \eta=\frac{1}{\sum{(似然*先验)}} η=()1


连续
f X ∣ Y ( x ∣ y ) = f Y ∣ X ( y ∣ x ) ∗ f X ( x ) f Y ( y ) = η ∗ 似 然 ∗ 后 验 f_{X|Y}(x|y)=\frac{f_{Y|X}(y|x)*f_{X}(x)}{f_{Y}(y)}=\eta*似然*后验 fXY(xy)=fY(y)fYX(yx)fX(x)=η

定理:若 f X ( x ) f_{X}(x) fX(x)~ N ( μ 1 , δ 1 2 ) , f Y ∣ X ( y ∣ x ) N(\mu_{1}, \delta_1^2),f_{Y|X}(y|x) </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值