题目
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意:
每个数组中的元素不会超过 100
数组的大小不会超过 200
示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
思路
首先先遍历一次数组,得到整个数组元素的和。若和为奇数,则必然不能分割,若为偶数,则有可能可以。
试过暴力递归,还有排序之后的暴力递归,都有特殊的样例使得不能通过,观察到题目数据的特点,就是全为正,并且和较小,最大也就20000,因此可以考虑用一个bool数组,记录下整数数组中各个子集元素和的可能。
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for(int loop = 0 ; loop < nums.size() ; loop ++){
sum += nums[loop];
}
if(sum % 2 != 0){
return 0;
}
vector<bool>ifCanSum(sum / 2 + 1 , false);
ifCanSum[0] = true;
for(int loop = 0 ; loop < nums.size() ; loop++){
for(int loop1 = ifCanSum.size() - 1 ; loop1 >= 0 ; loop1 --){
if( ifCanSum[loop1] && loop1 + nums[loop] < ifCanSum.size() ){
ifCanSum[ loop1 + nums[loop] ] = true;
}
}
}
return ifCanSum.back() ;
}
};