一、前言
这是一本技术手册,旨在简要说明maple的相关功能在《线性代数》课程中的用处
二、基本操作(不需要Linear Algebra包)
1.矩阵
A:=Matrix([ [a11,a12,...,a1n],[a21,a22,...,a2n],...,[an1,an2,...,ann] ])
Matrix内部需要打小括号包住中括号,A:=,不需要分号
输出结果
1.5 附加条件的矩阵
A:=Matrix([...],shape=symmetric,scan=triangular[upper],datatype=float)
其中:
①shape=symmetric 输入矩阵为对称阵
②scan=triangular[upper] 输入为上三角矩阵(即输入只有对角线及其上半有用)
③datatype=float 输入值为浮点类型
2.矩阵乘/加法/乘方/逆矩阵
A B和A+B和A^n
其中:
B=(2,0)
(0,2)
输出结果
三、Linear Algebra包
0.Maple在调用包方面的特性
Maple具有记忆特点,即调用一次包后包就保存在此文件的临时数据包中,不会删掉
也就是说
1.(仅限本次打开适用)
写了一次
with(LinearAlgebra):
后,就算把这行删除也不会出现问题(函数可以执行功能)
2.如果删掉with(LinearAlgebra):,将文件保存后再打开直接运行(不输入with(LinearAlgebra):)则会出现问题(函数无法使用)
1.包内函数
with(LinearAlgebra);
敲空格即可实现
输出结果:
[`&x`, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]
四、具体内容(应当按照章节顺序)
第一章
1.初等行变换的实现(需要包)
1 适用:A为矩阵
2 调用
一步到位:ReducedRowEchelonForm(A)
每一步:顶上的窗口(W)——助教——线性代数——高斯-约当消元法
接下来编辑矩阵(最大支持5x5),显示,关闭,下一步/所有步
2.求矩阵的秩
1 适用:A为矩阵
2 调用:Rank(A)
3.矩阵的基本运算
(矩阵加法/数乘和矩阵乘法)
1 适用:A,B为矩阵,除数乘外要求dim(A)=dim(B)
2 调用
A+B
kA
A B
分别对应加法、数乘,矩阵乘法
4.矩阵的转置(需要包)
1 适用:A为矩阵
2 调用 Transpose(A)
5.逆矩阵
A := Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
Minor(A, 3, 3)
1 适用:A为可逆,方阵
2 调用:A^-1
第二章
1.行列式(需要包)
1 适用:A为方阵
2 调用:Determinant(A)
2.代数余子式(需要包)
1 适用:A为矩阵(包括1x1)
2 调用:Minor(矩阵名,行数,列数)
A := Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
Minor(A, 3, 3)
输出结果为(1x1矩阵C,Minor(C,1,1)输出1)
,-3
3.伴随矩阵(需要包)
1 适用:A是方阵
2 调用:Adjoint(A)
第三章
1.零空间(需要包)
1 适用:A是矩阵
2 调用:NullSpace(A)
输出结果为一些列向量或是空集
2.列空间(需要包)
1 适用:A是矩阵
2 调用:ColumnSpace(A)
输出结果为一些列向量
3.特殊:求几个向量张成空间的基(需要包)
(参见3.4中DL3.11的应用:例3.15)
1 适用:一些列向量组成的矩阵A
2 推导(需要掌握)
3 调用
Basis (ColumnSpace (Transpose (ReducedRowEchelonForm (Transpose(A)))))
4.施密特正交化(需要包)
1 适用:A为子空间/子空间的一组基
2 调用:GramSchmidt(A)
第四章
1.本征值和本征向量(特征值和特征向量)
1 适用:方阵A
2 调用:a,b=Eigenvectors(A),其中a是本征值,b是本征向量