国产AI大模型「医疗十大应用场景」案例盘点,推动医疗健康领域智能升级

人工智能技术的浪潮正席卷全球,AI大模型以其卓越的数据处理能力和深度学习能力,正在成为医疗健康领域变革的关键力量。本文将深入探讨AI大模型在医疗十大场景中的创新实践,展示其提升医疗服务效率、赋能临床决策、推动行业智能化转型的广阔前景。

01

十大应用场景

智能化诊疗

基于海量医疗数据,辅助临床诊断决策

AI大模型通过分析海量医疗数据,能够辅助医生进行更准确的诊断。例如,百度灵医大模型利用其强大的数据处理能力,通过API或插件嵌入的方式,在200多家医疗机构中展开应用,显著提升了诊断的准确性和效率。此外,医联推出的MedGPT大模型,基于Transformer架构,其参数规模达到100B(千亿级),预训练阶段使用了超过20亿的医学文本数据,致力于实现疾病预防、诊断、治疗到康复的全流程智能化诊疗。

个性化治疗

患者进行精准画像,介入管理,提高效率

在个性化治疗方面,AI大模型可以对患者进行精准画像,制定个性化治疗方案,帮助实现千人千面的患者管理策略。例如,圆心科技的源泉大模型将每一个用户设有标签,管理服务会根据不同特性的人进行针对性关注患者药物依从性、联合用药以及疾病康复管理,通过大模型数字化应用为患者生成定制化疾病科普和药品服务。

药物研发

加速候选药物筛选,优化临床试验设计

AI大模型在药物研发领域同样发挥着重要作用。晶泰科技的XpeedPlay平台利用大模型技术,超高速生成苗头抗体,加速了药物的研发流程。智源研究院研发的全原子生物分子模型OpenComplex 2能有效预测蛋白质、RNA、DNA、糖类、小分子等复合物,可以提升药物研发的效率。此外,腾讯“云深”(iDrug)平台也已同时具备了小分子药物与大分子药物的加速发现能力。

医学影像分析

赋能放射科,提升医疗服务效率和水平

在医学影像分析领域,AI大模型通过深度学习技术,自动识别医学影像中的病变区域。首都医科大学附属北京天坛医院联合北京理工大学团队合作推出“龙影”大模型(RadGPT),基于该模型研发的首个“中文数字放射科医生”“小君”已经实现通过分析MRI图像描述快速生成超过百种疾病的诊断意见,平均生成一个病例的诊断意见仅需0.8秒。目前“小君”医生可以实现针对脑血管病以及脑部、颈部和胸部等十几个部位的肿瘤、感染类疾病等上百种疾病给出诊断意见。

医疗质控

大模型驱动规范医疗,提升文书、影像质量

AI大模型能够生成规范的医疗文书模板,快速检测文书和影像的缺陷,提高医疗质量和效率。惠每科技推出的医疗大模型在病历质控场景中的应用可以模拟人工专家,自动分析病历文书中存在的内涵缺陷,并通过CDSS推送缺陷问题和修改意见,供医生修改病历进行参考。信创海河实验室的医疗影像质控大模型可以迅速检测X光片在拍摄时有没有摆位不正等问题,及时调整,让得到的影像更清晰,避免重复检查或减少后续的检查步骤。

患者服务

全面答疑,提升就医体验

AI大模型能够为患者提供智能导诊、症状自查、就医指导等服务,改善患者体验。百度文心大模型与灵医大模型合力支撑的AI药品说明书就是一个典型的例子。AI药品说明书既支持患者阅读药品说明,也支持患者通过文字、语音的方式向AI药品说明书进行提问。大模型支撑下,AI药品说明书会根据患者的输入内容自动生成结果,并借助药师/医生的虚拟形象进行辅助回答。AI大模型为患者提供了更便捷的教育和信息获取渠道。

医院管理

助力智慧医院建设,优化资源配置

AI大模型为医院管理者提供辅助管理决策支持,提升医院运营效率。万仞智慧发布的董奉大模型覆盖全病程的大模型应用,实现医疗资源的智能高效配置。医护群体提供「初级医护指引」「病例校验质检」等智能应用引擎,减轻医护工作负担。同时,为医院管理体系提供「国家医疗绩效考核」「方案综合费用控制」等需深度定制的功能,支持助力提升国家公立医院在医疗绩效考核中的表现,加强对医疗资源的有效管理与合理配置。

教学科研

构建医学知识图谱,推动医学教育创新

AI大模型在医学教育和科研中发挥重要作用。医渡科技大模型基于超过千亿精细化Token训练,满足高质量数据要求和精细化数据处理,为医学科研、临床辅助等方面进行赋能,新一代科研数据平台能够从AI阅读总结文献、自然语言病历搜索到智能数据加工、自动化统计分析、论文初稿智能生成等全面支持临床科研人员,将科研产出论文周期从6-12个月加速至1-2月。

中医智能化

中医药现代化、标准化进程加速

AI大模型对中医相关知识进行数据挖掘,推动中医知识标准化、诊疗标准化发展。天士力医药集团与华为云联合发布的“数智本草”中医药大模型,集守正、创新、产业化三大类数据,为中医药研究提供有力支持。该大模型拥有380亿参数量,基于中医药海量文本数据预训练,结合向量库检索强化,以及中药研发多场景的微调,能够更好地帮助研究者完成中医药理论证据的挖掘和总结,推动中医药现代化发展。

公共卫生

有力支持疫情预警、传染病防控

AI大模型辅助流行病学的大数据分析及趋势判断。日前,《柳叶刀(The Lancet)》子刊EBioMedicine发表了一项中国科学家应用自适应AI模型和多源数据,预测重庆市流感活动度的研究,该研究成果由平安科技、平安智慧城市与重庆市疾病预防控制中心、陆军军医大学和清华大学联合完成,是中国首个基于AI和大数据的流感实时预测模型。

02

未来展望

AI大模型正逐步渗透医疗行业的各个角落,从精准诊断到个性化治疗,从药物研发到公共卫生,AI大模型的应用正推动医疗行业向更高效、更智能的方向发展。随着技术的不断进步,AI大模型将在提升医疗服务质量、推动医疗行业数字化转型中发挥更加关键的作用。未来,跨领域融合、智能化医疗、普惠医疗以及伦理和监管的完善将成为AI大模型发展的新趋势,共同开启医疗健康领域的新时代。

技术融合与跨学科创新

AI大模型将与生物信息学、基因编辑、纳米技术等前沿科学领域深度融合,推动个性化医疗和精准医疗的发展。通过整合不同领域的数据和知识,AI大模型能够提供更为全面和深入的医疗解决方案,实现疾病治疗和健康管理的个性化、精准化。

构建智能化医疗系统

未来的医院和诊所将越来越多地采用智能化系统,AI大模型将在其中扮演核心角色。从智能诊断、治疗计划的制定,到患者监护和康复管理,AI大模型将提供自动化、智能化的医疗服务,提高医疗服务的效率和质量。

实现普惠医疗

AI大模型的应用将有助于缩小城乡医疗服务差距,通过远程医疗、移动医疗等技术手段,将优质医疗资源下沉到基层和偏远地区。这将极大提高医疗服务的覆盖率和可及性,实现医疗资源的均衡分配。

完善伦理和监管机制

随着AI大模型在医疗领域的广泛应用,伦理和监管问题日益凸显。未来需要建立更为完善的伦理审查和监管机制,确保AI技术的应用不侵犯患者隐私,不造成数据泄露,同时保证AI医疗决策的透明度和可解释性。

03

结 语

AI大模型在医疗领域的未来发展将是多方面的,不仅仅局限于技术的进步,更涉及伦理、监管等多个层面。通过不断地创新和努力,AI大模型有望为医疗行业带来革命性的变化,提高医疗服务的质量和效率,为全球患者带来更大的福祉。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值