ChatGPT横空出世后,AI/LLM浪潮席卷全球,AI/LLM不再是高高在上的技术,而是每个人都能触及并用来构建应用的工具。 然而,面对日新月异的技术发展、层出不穷的新概念和工具,你是否感到迷茫和不知所措?别担心,这本刚出版一个月的新书——《AI Engineering: Building Applications with Foundation Models》,将为你拨开迷雾,指明方向!
为什么这本书值得你读?
1. 新鲜出炉,紧跟前沿技术趋势!这本书由AI领域资深专家Chip Huyen撰写,2025年1月刚刚出版!内容涵盖了截至目前最新的大模型应用技术和实践经验,让你站在巨人的肩膀上,把握AI发展的脉搏。想进一步了解这本书?不妨收听作者Chip Huyen参与的播客节目AI Engineering with Chip Huyen[1]。
2. 全面覆盖,大模型应用全景图!这本书不是简单的教程,而是一本系统、全面讲解大模型应用开发的"百科全书"。它几乎覆盖了LLM应用的方方面面:
•第一章:Introduction to Building AI Applications with Foundation Models
•要点: 介绍AI应用构建的基础知识,包括AI工程的兴起、与传统ML工程的区别、AI应用栈的组成等。帮你评估是否需要构建AI应用,以及如何规划AI项目。
•第二章:Understanding Foundation Models
•要点: 深入剖析基础模型,包括训练数据、模型架构(重点讲解Transformer)、模型规模、后训练(SFT、RLHF)以及采样策略等。让你了解模型的工作原理,为模型选择和应用打下基础。
•第三、四章:Evaluation Methodology & Evaluate AI Systems
•要点: 重点讲解评估方法和体系,包括评估指标、评估方法(精确评估、相似度测量、AI作为评判者)、公开基准测试以及如何构建自己的评估流程。这是AI工程中最具挑战性的部分,也是构建可靠AI应用的关键。
•第五章:Prompt Engineering
•要点: 深入探讨提示工程(Prompt Engineering),包括提示的组成、上下文学习、提示工程最佳实践、防御性提示工程(对抗提示攻击)等。教你如何编写高效提示,充分发挥模型的潜力。
•第六章:RAG and Agents
•要点: 介绍RAG(检索增强生成)和Agent,这是构建复杂AI应用的两大核心模式。详细讲解RAG的架构、检索算法、优化方法,以及Agent的组成、工具使用、规划和评估。
•第七章:Finetuning
•要点: 讲解微调(Finetuning)技术,包括微调的适用场景、内存瓶颈分析、参数高效微调(PEFT,重点讲解LoRA)、模型合并等。让你能够根据特定任务调整模型,提升性能。
•第八章:Dataset Engineering
•要点: 聚焦数据集工程,包括数据整理(质量、覆盖率、数量)、数据获取与标注、数据增强与合成(重点讲解AI生成数据)、数据处理等。这是训练高质量模型的基石。
•第九章:Inference Optimization
•要点: 探讨推理优化,包括推理概述、性能指标、AI加速器、模型优化和推理服务优化等。教你如何让模型运行得更快、更便宜、更安全。
•第十章:AI Engineering Architecture and User Feedback
•要点: 整合全书内容,构建完整的AI应用架构(逐步构建,从简单到复杂),包括增强上下文、添加防护、模型路由和网关、缓存、Agent模式等。并介绍如何设计用户反馈系统,持续改进应用。
3. 深入浅出,人人都能读懂!这本书最大的亮点在于它的可读性。Chip Huyen以其丰富的实践经验和深入浅出的讲解方式,将复杂的AI概念和技术娓娓道来。
•没有晦涩的数学公式和定理证明,取而代之的是清晰的解释和生动的例子。 •没有枯燥的理论推导和代码堆砌,而是结合了大量实际案例和行业洞察,让你在轻松愉快的阅读中掌握核心知识。
总结:《AI Engineering》这本书以其全面性、时效性、实用性和可读性,成为了AI/LLM时代每个从业者和爱好者的必读书籍。它不仅提供了构建大模型应用的技术路线图,更重要的是,它传递了一种系统化的思维方式,帮助读者在快速变化的AI领域中找到方向,抓住机遇。无论你是AI工程师、产品经理、研究人员,还是对AI充满好奇的普通读者,这本书都能为你带来启发和收获。强烈推荐!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓