LLM大型语言模型脑图-基础技术篇

近期收到很多同学的私信,发现大家对LLM基础技术还是比较感兴趣,故根据我现在已有的知识,给大家整理一个脑图;主要梳理了基础技术篇的脑图,后续文章会继续给出开发、应用偏的脑图;辅助小伙伴们对LLM认知。

脑图下载地址:https://github.com/PulsarPioneers/llm-learn/blob/main/assets/llm-learn-base-mind.svg

1. LLM基础概念

1.1 定义与背景

什么是LLM:

基于深度学习的自然语言处理模型,具备生成、理解和处理文本能力。

发展历史

  • 早期NLP:规则系统、统计模型(HMM、CRF)。
  • Transformer时代:2017年《Attention is All You Need》。
  • 规模化模型:GPT系列、BERT、T5等。

核心特点

  • 大规模参数(亿级到万亿级)。
  • 自监督学习(Pre-training + Fine-tuning)。
  • 多任务适应性。

1.2 工作原理

Transformer架构

  • Encoder-Decoder结构(BERT vs GPT)。
  • Attention机制:Self-Attention、Multi-Head Attention。
  • Positional Encoding:处理序列顺序。

图片

训练过程

  • 预训练:大规模无标注文本(Common Crawl、Wikipedia)。
  • 微调:针对特定任务(分类、生成)。
  • 指令微调(Instruction Tuning):提升指令理解。

关键技术

  • Tokenization:WordPiece、BPE。
  • Embedding:Word、Position、Segment。
  • Layer Normalization与残差连接。

2. LLM核心技术与算法

2.1 模型架构

图片

主流模型

  • GPT:生成式,自回归。
  • BERT:双向,掩码语言模型。
  • T5:文本到文本框架。
  • LLaMA:高效研究模型。

架构优化

  • Sparse Attention:降低计算复杂度。
  • Mixture of Experts(MoE):动态路由提升效率。
  • FlashAttention:优化GPU内存使用。

2.2 训练与优化

数据处理

  • 数据清洗与去重。
  • 多语言与多模态数据。

优化算法

  • Adam/AdamW:主流优化器。
  • Learning Rate Schedule:Warm-up与衰减。

分布式训练

  • 数据并行 vs 模型并行。
  • Pipeline Parallelism与Tensor Parallelism。
  • ZeRO(DeepSpeed):内存优化。

2.3 评估与指标

通用指标

  • Perplexity:生成质量。
  • BLEU/ROUGE:文本生成评估。
  • F1/Accuracy:分类任务。

任务特定指标

  • GLUE/SuperGLUE:NLP综合基准。
  • MMLU:多任务语言理解。
  • 人类评估
  • 流畅性、相关性、一致性。

3. LLM应用场景

3.1 文本生成

图片

应用案例

  • 文章创作、故事生成。
  • 代码生成(Copilot、CodeLLaMA、Cursor)。
  • 对话系统(ChatGPT、Grok、 DeepSeek)。

挑战

  • 事实性(Hallucination)。
  • 上下文一致性。

3.2 文本理解

任务类型

  • 情感分析、文本分类。
  • 命名实体识别(NER)。
  • 问答系统(QA)。

技术要点

  • 上下文建模。
  • 知识增强(Knowledge-Augmented Models)。

3.3 多模态与跨领域

多模态LLM

  • 文本+图像:CLIP、DALL·E、Flamingo。
  • 文本+音频:Whisper。

跨领域应用

  • 医疗:临床记录分析。
  • 法律:合同审查。
  • 教育:自动批改、智能辅导。

4. LLM开发与部署

4.1 开发工具与框架

图片

主流框架

  • PyTorch/TensorFlow:模型开发。
  • Hugging Face Transformers:预训练模型库。
  • DeepSpeed/Megatron:分布式训练。

开发流程

  • 数据准备与预处理。
  • 模型选择与微调。
  • 超参数调优。

4.2 部署与优化

部署方式

  • 云端API(OpenAI、DeepSeek)。
  • 本地部署(ONNX、Triton、Ollama)。

优化技术

  • 量化(Quantization):INT8、FP16。
  • 剪枝(Pruning):减少冗余参数。
  • 蒸馏(Distillation):小模型继承大模型能力。

硬件加速

  • GPU/TPU:主流训练硬件。
  • Inference优化:NVIDIA TensorRT。

4.3 开源与生态

开源模型

  • LLaMA、Mistral、Grok(部分开源)。
  • Hugging Face社区模型。

数据集

  • The Pile、C4、RedPajama。

社区与工具

  • GitHub、Kaggle。
  • Weights & Biases:实验跟踪。

5. LLM挑战与未来

5.1 技术挑战

计算成本

  • 训练与推理的高昂算力需求。
  • 能耗与环境影响。

模型局限

  • 偏见与公平性。
  • 鲁棒性与对抗攻击。

伦理问题

  • 隐私保护。
  • 虚假信息生成。

5.2 未来方向

高效模型

  • 更小、更快、更节能的模型。
  • 模块化与可组合模型。

多模态融合

  • 统一文本、图像、音频、视频。

自主学习

  • 在线学习与自适应。
  • 强化学习与人类反馈(RLHF)。

6. 学习资源与路径

6.1 入门资源

图片

书籍

  • 《Deep Learning》(Goodfellow et al.)。
  • 《Natural Language Processing with Transformers》(Hugging Face)。

课程

  • Stanford CS224N:NLP课程。
  • Fast.ai:实用深度学习。

博客与教程

  • Hugging Face Blog。
  • Distill.pub。

6.2 进阶资源

论文

  • 《Attention is All You Need》(Vaswani et al.)。
  • GPT-3、PaLM、LLaMA系列论文。

项目实践

  • Kaggle竞赛:NLP任务。
  • GitHub项目:微调LLM。

社区

  • Reddit:r/MachineLearning。
  • Discord:Hugging Face社区。

6.3 学习路径

初学者

  • 学习Python与PyTorch基础。
  • 理解NLP基础(词向量、RNN)。
  • 实践简单Transformer模型。

中级

  • 微调BERT/GPT模型。
  • 参与Kaggle NLP任务。
  • 阅读核心论文。

高级

  • 开发定制LLM。
  • 优化分布式训练。
  • 研究多模态与RLHF。

结束语

脑图最后结果在这里可以下载:

https://github.com/PulsarPioneers/llm-learn/blob/main/assets/llm-learn-base-mind.svg

 

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值