MiniMind:低成本从 0 训练 26M 的小参数GPT,值得推荐的入门 LLM 教程

本文介绍一个很火的 github 项目:https://github.com/jingyaogong/minimind 。通过该项目,使用个人 GPU 资源,也可以复现主流的大模型架构。该项目给 LLM 学习带来动手实践的乐趣。学习 LLM,不再因为机器资源的限制,停留在书面知识的学习。

该项目已有 18.6K star:

项目介绍

  • 此开源项目旨在完全从 0 开始,仅用 3 块钱成本 + 2小时!即可训练出仅为 25.8M 的超小语言模型MiniMind。
  • MiniMind系列极其轻量,最小版本体积是 GPT-3 的 17000\frac{1}{7000},力求做到最普通的个人 GPU 也可快速训练。
  • 项目同时开源了大模型的极简结构-包含拓展共享混合专家(MoE)、数据集清洗、预训练(Pretrain)、监督微调(SFT)、LoRA微调, 直接偏好强化学习(DPO)算法、模型蒸馏算法等全过程代码。
  • MiniMind 同时拓展了视觉多模态的VLM: MiniMind-V。
  • 项目所有核心算法代码均从 0 使用 PyTorch 原生重构!不依赖第三方库提供的抽象接口。
  • 这不仅是大语言模型的全阶段开源复现,也是一个入门LLM的教程。
  • 希望此项目能为所有人提供一个抛砖引玉的示例,一起感受创造的乐趣!推动更广泛AI社区的进步!

项目包含

  • MiniMind-LLM结构的全部代码(Dense+MoE模型)。
  • 包含 Tokenizer 分词器详细训练代码。
  • 包含 Pretrain、SFT、LoRA、RLHF-DPO、模型蒸馏的全过程训练代码。
  • 收集、蒸馏、整理并清洗去重所有阶段的高质量数据集,且全部开源。
  • 从0实现预训练、指令微调、LoRA、DPO强化学习,白盒模型蒸馏。关键算法几乎不依赖第三方封装的框架,且全部开源。
  • 同时兼容transformers、trl、peft等第三方主流框架。
  • 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练,支持wandb可视化训练流程。支持动态启停训练。
  • 在第三方测评榜(C-Eval、C-MMLU、OpenBookQA等)进行模型测试。
  • 实现 Openai-Api 协议的极简服务端,便于集成到第三方ChatUI使用(FastGPT、Open-WebUI等)。
  • 基于 streamlit 实现最简聊天WebUI前端。
  • 复现(蒸馏/RL)大型推理模型 DeepSeek-R1 的 MiniMind-Reason 模型,数据+模型全部开源!

希望此开源项目可以帮助LLM初学者快速入门!

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值