《机器学习》学习笔记(二)-- Gradient Descent

  1. Gradient Descent图解
  2. Learning rate
  3. Adagrad
  4. Stochastic Gradicent Descent
  5. Feature scaling
  6. 泰勒展开推到Gradient Descent

1.Gradinet Descent图解
在这里插入图片描述
将gradient descent在投影到二维坐标系中可视化:
在这里插入图片描述
– 红色箭头表示(θ1,θ2)这点的梯度,梯度方向即箭头方向(从低处到高出,梯度大小即箭头长度)。
– 蓝色箭头代表的则是实际情况下θ1和θ2的更新过程图,每次更新沿着蓝色箭头方向loss会减小。

因此在整个gradient descent的过程中,梯度不一定是递减的,箭头的长度也可以长短不一,但是沿着梯度下降的方向,函数值loss一定是递减的,当gradient=0时,loss则下降到局部最小值

通俗来书,gradient梯度可以理解为高度上升最快的哪个方向,它的反方向自然就是梯度下降最快的方向,于是update沿着梯度反方向。

2.Learning rate
在gradient descent的过程中,learning rate也是影响结果的一个关键因素
在这里插入图片描述

  • 如果learning rate取值合适,就可以向上图中红色线段一样顺利达到loss的最小值
  • 如果learning rate太小,虽然还是能走到最小的地方,但是会走的非常慢,像蓝色一样
  • 如果太大的话,就有可能像绿色线段一样,跳过了最小值
  • 如果非常大,甚至可能在一瞬间飞出去,像黄色线段一样。结果就是每次update参数以后,loss反而越来越大

当然,我们也可以动态地调整learning rate–Adaptive Learning rates
主要原则:learning rate通常是随着参数地update越来越小的

因为在起始点时,通常是离最低点比较远,此时步伐就要大一点,当越接近目标时,为了防止跳过了目标,就应该减少learning rate,让其能收连载最低点

3.Adagrad
Adagra就是将不同参数地learning rate分开考虑地一种算法
在这里插入图片描述
这里w是function中的某个参数,t代表是第t次更新,gt是Loss对w的偏微分,而σt是之前Loss对w变为分的方均根
在这里插入图片描述
根据以上的一系列步骤,最后Adagrad可以化简为下式在这里插入图片描述
而此时又有一个问题,对于Afdagrad的最终式,我们在做gradient descent时,希望的时当梯度之即微分值gt越大时,更新的不发也更大,但是Adagrad表达式中,分母表示梯度越大,步伐越大,分子却表示梯度越大步伐越小。

	而这一状况主要是因为Adagrad考虑的时,这个gradient有多surprise,即反差有多大

在这里插入图片描述

4.Stochastic Gradicent Descent
随机梯度下降的方法可以让训练更加快速,传统的gradient decent的思路是看完所有样本点之后再构建lossfunctiong,然后再更新参数;

而Stochastic gradient descemt的做法是,没看到一个点就update一次,因此它的loss function不是所有样本点的error平方和,而实这个随机样本点的error平方

在这里插入图片描述
两者直观对比图:
在这里插入图片描述

5.Feature Scaling

当多个特征的分布范围很不一样时,最好将这些不同feature的范围缩成一样–特征缩放
在这里插入图片描述

为什么要做特征缩放?
比如式子为y=b+w1x1+w2x2假设x1的值都很小,而x2的值都很大,如果对w1&w2都做一个同样的变动,那么w1的变化对y的影响比较小,而w2的变化对y的影响比较大
在这里插入图片描述
而当特征缩放了以后,loss在参数w1,w2平面上的投影就是一个正圆形,而当投影是正圆形的化,无论梯度下降方向怎么走,始终都向着圆心走,因此也会提高效率

如何做feature scaling?
假设有R个example,x1,x2,…,xr,每一笔example,其里面都有一组feature

对于每一个demension i,都去算出它的平均值mean = mi,以及标准差standard deviation = σi

对第r个example的di个component,减掉均值,除以标准差。当均值为0,标准差为1则为缩放完成
在这里插入图片描述

6.Gradient Decent理论基础
6.1Taylor Series

在这里插入图片描述
在这里插入图片描述
从泰勒展开式推导出Gradient descent
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值