论文笔记
文章平均质量分 81
DIAJEY
这个作者很懒,什么都没留下…
展开
-
《Surface Defect Saliency of Magnetic Tile》-- 阅读笔记
论文信息 该论文通过显著性检测模型检测磁瓦的表面缺陷,通过结合M-cue(多个维度整合形成显著性检测指标)+U-Net(深度学习网络结构训练)+PUSH(提高缺陷检测精度,使用边界框突出显示预测的缺陷),提出了一个名为MCuePushU的定制模型 该模型总结了一组主导线索,然后通过图像算术将它们融合到深层神经网络U-Net中,最后嵌入Push网络以使用边界框突出显示预测的缺陷。 实验表明,MCuePushU可以达到最先进的显着性能,并且可以满足实时检查过程的需求,其性能远远超过了本文测试的所有其他原创 2021-03-03 18:30:14 · 2104 阅读 · 1 评论 -
《Image Deformation Using Moving Least Squares》-- 阅读笔记
参考资料:https://zhuanlan.zhihu.com/p/103212151https://blog.csdn.net/hjimce/article/details/46550001一.背景《Surface Defect Saliency of Magnetic Tile》一文中提到过一种基于移动最小二乘图像变形的数据增强方法该方法可以通过操纵少数点完成网格的变形,实现图像变形,可以生成更多的形状不同的缺陷图像,增大数据量。二. 详细步骤三.算法实现具体讲仿射变换的变原创 2021-03-03 18:01:16 · 639 阅读 · 1 评论 -
《Defects Detection Based on Deep Learning and Transfer Learning》-- 阅读笔记
论文信息整体思路:·无监督学习 根据源域样本特征对其进行训练,以便根据源域样本获得网络的权重。然后,将源域DBN的结构和参数转移到目标域, 并使用目标域样本对网络参数进行微调,以获取目标域训练样本与无缺陷模板之间的映射关系。最后,通过与重建图像进行比较来检测测试样品的缺陷。优点:通过参数传递学习解决DBN网络训练中的过拟合问题。通过迁移学习,可以解决样本不够的问题,并且可以通过两种样本相互交叉传递,微调,不断提高准确率。缺点:能检测相同位置的产品缺陷,而没有平移和旋转不变性。·DBN原创 2021-02-03 20:51:21 · 562 阅读 · 0 评论 -
《Deep Active Learning for Civil Infrastructure Defect Detection and Classification》-- 阅读笔记
论文信息主要思路·Active Learning:先使用粗糙的系统实现二分类,将无缺陷的样本筛选出去,然后再将有缺陷的样本发送到人类专家中进行再标记,然后进行二次训练,不断循环,以改善系统性能·ResNet网络:为了提升分类性能,该论文使用多层的AL框架。较深的网络可能会遇到梯度消失问题,因此使用ResNet的带有残差单元的映射代替网络中的原始映射。·加权损失函数:由于无缺陷样本往往比有缺陷样本多得多,为了解决因为样本偏差而导致性能出现偏差,因此在交叉熵的基础上对于非缺陷patch部分加上权原创 2021-02-02 15:44:10 · 393 阅读 · 0 评论 -
《Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks》学习笔记
基于卷积神经网络的金属表面缺陷自动检测与识别:·主要思想:将缺陷检测与识别分类分开。首先通过级联自编码器(CASAE)分割和定位缺陷,生成预测Mask。然后扔进训练好的CNN网络进行分类优点:1.不错的鲁棒性和准确性2.可以准确知道缺陷的位置和大小大致架构:·首先将输入的原始图像转换为基于CASAE的预测Mask。·其次,阈值模块用于对预测结果进行二值化以获得准确的缺陷轮廓。·第三,由缺陷区域检测器提取并裁剪被视为下一模块的输入的缺陷区域。·最后,在分类模块中,这些缺陷区域通过紧凑的C原创 2021-01-31 10:14:31 · 1376 阅读 · 2 评论 -
《一种基于无监督学习的纹理表面缺陷自动检测方法》-- 阅读笔记
参考论文:《An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces》整体思路·使用无缺陷样本进行模型训练,无监督学习·多尺度卷积降噪自编码器 + 高斯金字塔重建 完成训练CDAE(卷积降噪自编码器): 重建输入图像块,并生成残差图以进行预测高斯金字塔: 分析和综合不同分辨率下的检查结果实际优势· 可以适用于表面纹理均匀或不规则的材料· 不需要手机缺陷样本,可原创 2021-01-29 14:56:42 · 3046 阅读 · 5 评论 -
迁移学习(Transfer Learning)-- 概念理解
迁移学习(Transfer Learning)迁移学习概述背景随着越来越多的机器学习应用场景的出现,而现有表现比较好的监督学习需要大量的标注数据,标注数据是一项枯燥无味且花费巨大的任务,所以迁移学习受到越来越多的关注。传统机器学习(主要指监督学习)基于同分布假设需要大量标注数据然而实际使用过程中不同数据集可能存在一些问题,比如数据分布差异标注数据过期训练数据过期,也就是好不容易标定的数据要被丢弃,有些应用中数据是分布随着时间推移会有变化如何充分利用之前标注好的数据(废物利用),原创 2021-01-27 16:56:27 · 3368 阅读 · 1 评论 -
GoogleNet--Inseption模型理解与实现
1、googleNet—Inception V1结构googlenet的主要思想就是围绕这两个思路去做的:(1).深度,层数更深,文章采用了22层,为了避免上述提到的梯度消失问题,googlenet巧妙的在不同深度处增加了两个loss(辅助分类器)来保证梯度回传消失的现象。(2).宽度,增加了多种核 1x1,3x3,5x5,还有直接max pooling的 但是如果简单的将这些应用到feature map上的话,concat起来的feature map厚度将会很大,所以在googlenet中为了避免这转载 2021-01-27 16:55:27 · 295 阅读 · 0 评论 -
《Going Deeper with Convolutions》阅读笔记
Going Deeper with ConvolutionsAbstract我们在ImageNet大规模视觉识别挑战赛2014(ILSVRC14)上提出了一种代号为Inception的深度卷积神经网络结构,并在分类和检测上取得了新的最好结果。这个架构的主要特点是提高了网络内部计算资源的利用率。通过精心的手工设计,我们在增加了网络深度和广度的同时保持了计算成本不变。为了优化质量,架构的设计以Hebbian和多尺度处理直觉为基础。我们在ILSVRC14提交中应用的一个特例被称为GoogLeNet,一个22层原创 2021-01-27 16:47:29 · 611 阅读 · 0 评论 -
《Visualizing and understanding convolutional networks》阅读笔记
Visualizing and understanding convolutional networksAbsolution 大型卷积网络模型最近在ImageNet基准测试中证明了令人印象深刻的分类性能。但是,对于它们为什么表现如此出色或如何进行改进尚无明确的了解。本文介绍了一种可视化技术可深入了解中间要素层的功能以及分类器的操作。 在诊断角色中使用时,这些可视化使我们能够找到优于Krizhevsky等人的模型架构。 在ImageNet分类基准上。 我们还进行了消融研究,以发现不同模型层对性能的贡献。原创 2021-01-27 16:40:57 · 519 阅读 · 0 评论 -
缺陷检测(一)-- 通过CNN方法实现布匹缺陷检测
参考论文:《A fast and robust convolutional neural network-based defect detection model in product quality control》–Tian Wang·Yang Chen·Meina Qiao·Hichem snoussi1. CNN结构设计:1.1. 输入图像:三通道彩色图像或单通道灰色图片1.2. ConV(卷积层):卷积层利用一组滤波器,且这组滤波器仅连接到最后一层输出的一小部分。使用33或55的矩阵去原创 2020-09-05 20:07:27 · 5117 阅读 · 2 评论 -
《基于opencv的机械零件部件特征的识别与检测》—阅读笔记
·opencv 数据访问方式访问方式有四种:原创 2020-10-30 19:58:44 · 5126 阅读 · 3 评论 -
《SDD-CNN: Small Data-Driven Convolution Neural》--翻译笔记
文章信息:摘要:在实际工业中,轴承的缺陷通常会极其细微且出现概率低,因此导致大数据量和小数据量检测的分布差异较大。因此本文使用一种小数据驱动的缺陷检测方法。第一步,使用标签扩张应用于去解决类分布不均匀的问题。第二步,使用半监督的数据扩张方法去扩张数据集,第三步,使用四种CNN的变形网络应用于检测和分类(SqueezeNet v1.1, Inception v3,VGG-16, and ResNet-18)。经过对比,Inception v3 midel检测结果最好,达到99.56%。并且和原始的CNN翻译 2021-01-21 11:32:58 · 1258 阅读 · 4 评论