《LF-YOLO》阅读笔记

LF-YOLO

改进模块:RMF(多尺度改进模块),EFE(减少计算量)

• 提出了一种名为RMF 的新型多尺度融合模块。它可以通过同时使用基于参数和无参数的方法来结合 X 射线图像的局部和全局线索。
• 为了有效地学习表征,设计了一个新的 EFE 模块作为主干单元,它可以用很少的参数和低计算量提取有意义的特征。

Multi-scale feature utilization

​ 现有的基于 CNN 的算法存在卷积特征在对象检测任务中对尺度敏感的问题。 许多方法试图通过利用多尺度特征使网络适应不同的尺度,我们将它们分为两类:基于参数的方法和无参数的方法。

Parameter-based method

​ 可学习参数可以利用和提取不同尺度的隐式特征扩张卷积通过改变卷积的扩张比来聚合多尺度上下文信息。 ASPP在输入特征图上以不同的速率操作扩张卷积。 然后,最后将通过不同分支提取的特征连接起来,以组合来自不同感受野的信息。 在ASSP的基础上,RFBNet 进一步引入了具有不同内核大小的卷积,以增强学习特征的尺度差异。(不同卷积核大小,多种感受野特征图输出前

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值