LF-YOLO
改进模块:RMF(多尺度改进模块),EFE(减少计算量)
• 提出了一种名为RMF 的新型多尺度融合模块。它可以通过同时使用基于参数和无参数的方法来结合 X 射线图像的局部和全局线索。
• 为了有效地学习表征,设计了一个新的 EFE 模块作为主干单元,它可以用很少的参数和低计算量提取有意义的特征。
Multi-scale feature utilization
现有的基于 CNN 的算法存在卷积特征在对象检测任务中对尺度敏感的问题。 许多方法试图通过利用多尺度特征使网络适应不同的尺度,我们将它们分为两类:基于参数的方法和无参数的方法。
Parameter-based method
可学习参数可以利用和提取不同尺度的隐式特征。 扩张卷积通过改变卷积的扩张比来聚合多尺度上下文信息。 ASPP在输入特征图上以不同的速率操作扩张卷积。 然后,最后将通过不同分支提取的特征连接起来,以组合来自不同感受野的信息。 在ASSP的基础上,RFBNet 进一步引入了具有不同内核大小的卷积,以增强学习特征的尺度差异。(不同卷积核大小,多种感受野–特征图输出前)