OpenCV中IplImage, CvMat, Mat 基本使用和元素遍历
opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像。在OpenCV的文档中说明Mat类型通过C++面向对象的方法实现的,可以进行Matlab风格的矩阵操作,IplImage类型和
CvMat类型用C语言实现的,两者之间存在着类似于面向对象中的继承关系。
- IplImage
- typedef struct _IplImage
- {
- int nSize; /* IplImage大小 */
- int ID; /* 版本 (=0)*/
- int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
- int alphaChannel; /* 被OpenCV忽略 */
- int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
- IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
- char colorModel[4]; /* 被OpenCV忽略 */
- char channelSeq[4]; /* 被OpenCV忽略 */
- int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. cvCreateImage只能创建交叉存取图像 */
- int origin; /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
- int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
- int width; /* 图像宽像素数 */
- int height; /* 图像高像素数*/
- struct _IplROI *roi; /* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
- struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
- void *imageId; /* 同上*/
- struct _IplTileInfo *tileInfo; /*同上*/
- int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
- char *imageData; /* 指向排列的图像数据 */
- int widthStep; /* 排列的图像行大小,以字节为单位 */
- int BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */
- int BorderConst[4]; /* 同上 */
- char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
- } IplImage;
特别说明:
(1)dataOrder这个可以取两个不同的值(0/1),其中交叉存取颜色通道:指颜色数据排列会是BGRBGR....
分开颜色通道:几个颜色通道就分几个颜色平面存储。
(2)roi代表感兴趣区域,是IplROI结构体,包含了xOffset,yOffset,height,width,coi成员变量,分别代表感情兴趣区域的x坐标,y坐标,高,宽。
二、访问IplImage中的数据元素
在访问时,分为间接访问和直接访问,同时当存储的数据元素为浮点型时,将(uchar*)改变为(float*)
- /*间接存取*/
- IplImage* img=cvLoadImage("lena.jpg", 1);
- CvScalar s; /*sizeof(s) == img->nChannels*/
- s=cvGet2D(img,i,j); /*get the (i,j) pixel value*/
- cvSet2D(img,i,j,s); /*set the (i,j) pixel value*/
- /*宏操作*/
- IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
- for(int row = 0; row < img->height; row++)
- {
- for (int col = 0; col < img->width; col++)
- {
- b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 0);
- g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 1);
- r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 2);
- }
- }
- /*直接存取*/
- IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
- uchar b, g, r; // 3 channels
- for(int row = 0; row < img->height; row++)
- {
- for (int col = 0; col < img->width; col++)
- {
- b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 0];
- g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 1];
- r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 2];
- }
- }
- CvMat
- typedef struct CvMat
- {
- int type;
- int step; /*用字节表示行数据长度*/
- int* refcount; /*内部访问*/
- union {
- uchar* ptr;
- short* s;
- int* i;
- float* fl;
- double* db;
- } data; /*数据指针*/
- union {
- int rows;
- int height;
- };
- union {
- int cols;
- int width;
- };
- } CvMat; /*矩阵结构头*/
二、访问CvMat中的数据元素
- /*间接访问*/
- /*访问CV_32F1和CV_64FC1*/
- cvmSet( CvMat* mat, int row, int col, double value);
- cvmGet( const CvMat* mat, int row, int col );
- /*访问多通道或者其他数据类型: scalar的大小为图像的通道值*/
- CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作为函数的形参void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);
- /*直接访问: 取决于数组的数据类型*/
- /*CV_32FC1*/
- CvMat * cvmat = cvCreateMat(4, 4, CV_32FC1);
- cvmat->data.fl[row * cvmat->cols + col] = (float)3.0;
- /*CV_64FC1*/
- CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1);
- cvmat->data.db[row * cvmat->cols + col] = 3.0;
- /*一般对于单通道*/
- CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1);
- CV_MAT_ELEM(*cvmat, double, row, col) = 3.0; /*double是根据数组的数据类型传入,这个宏不能处理多通道*/
- /*一般对于多通道*/
- if (CV_MAT_DEPTH(cvmat->type) == CV_32F)
- CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) + ch) = (float)3.0; // ch为通道值
- if (CV_MAT_DEPTH(cvmat->type) == CV_64F)
- CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) + ch) = 3.0; // ch为通道值
- /*多通道数组*/
- /*3通道*/
- for (int row = 0; row < cvmat->rows; row++)
- {
- p = cvmat ->data.fl + row * (cvmat->step / 4);
- for (int col = 0; col < cvmat->cols; col++)
- {
- *p = (float) row + col;
- *(p+1) = (float)row + col + 1;
- *(p+2) = (float)row + col + 2;
- p += 3;
- }
- }
- /*2通道*/
- CvMat * vector = cvCreateMat(1,3, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, 0, 0) = cvPoint(100,100);
- /*4通道*/
- CvMat * vector = cvCreateMat(1,3, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, 0, 0) = CvScalar(0, 0, 0, 0);
- Mat
一、先上OpenCV中的图像信息头,该类的定义如下:
- class CV_EXPORTS Mat
- {
- public:
- /*..很多方法..*/
- /*............*/
- int flags;(Note :目前还不知道flags做什么用的)
- int dims; /*数据的维数*/
- int rows,cols; /*行和列的数量;数组超过2维时为(-1,-1)*/
- uchar *data; /*指向数据*/
- int * refcount; /*指针的引用计数器; 阵列指向用户分配的数据时,指针为 NULL
- /* 其他成员 */
- ...
- };
二、访问Mat中的数据元素
- /*对某行进行访问*/
- Mat M;
- M.row(3) = M.row(3) + M.row(5) * 3; /*第5行扩大三倍加到第3行*/
- /*对某列进行复制操作*/
- Mat M1 = M.col(1);
- M.col(7).copyTo(M1); /*第7列复制给第1列*/
- /*对某个元素的访问*/
- Mat M;
- M.at<double>(i,j); /*double*/
- M.at(uchar)(i,j); /*CV_8UC1*/
- Vec3i bgr1 = M.at(Vec3b)(i,j) /*CV_8UC3*/
- Vec3s bgr2 = M.at(Vec3s)(i,j) /*CV_8SC3*/
- Vec3w bgr3 = M.at(Vec3w)(i,j) /*CV_16UC3*/
- /*遍历整个二维数组*/
- double sum = 0.0f;
- for(int row = 0; row < M.rows; row++)
- {
- const double * Mi = M.ptr<double>(row);
- for (int col = 0; col < M.cols; col++)
- sum += std::max(Mi[j], 0.);
- }
- /*STL iterator*/
- double sum=0;
- MatConstIterator<double> it = M.begin<double>(), it_end = M.end<double>();
- for(; it != it_end; ++it)
- sum += std::max(*it, 0.);