深度学习编程工具Pytorch—实现LeNet-5

本文介绍了如何使用PyTorch实现LeNet-5深度学习模型。主要内容包括主函数main()的训练和模型保存,以及训练函数train()和测试函数test()的详细解析。通过解读代码,阐述了PyTorch构建卷积神经网络的过程,以及模型的训练和测试流程。
摘要由CSDN通过智能技术生成

1.背景与目标

在这一讲中,我们将讲解近年来流行的深度学习编程工具Pytorch的使用方法。最近几年Pytorch工具使用份额日益增长,目前已经成为学术界研究深度学习的第一编程工具。这一讲我们仍然以LeNet为例来讲解Pytorch这一编程工具。

2. 基于LeNet的Pytorch实现

2.1 主函数main()

首先,我们打开main.py程序:

import torch
from torch.utils.data import DataLoader
import scipy.misc
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torch import optim

'''LeNet in PyTorch.'''
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, padding = 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1   = nn.Linear(16*5*5, 120)
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)
    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值