DJ.马
码龄4年
关注
提问 私信
  • 博客:104,441
    104,441
    总访问量
  • 58
    原创
  • 28,813
    排名
  • 157
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:生物医药-食品 反复横跳小丑

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 毕业院校: 江南大学
  • 加入CSDN时间: 2020-10-23
博客简介:

DJJ5210的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    690
    当月
    30
个人成就
  • 获得317次点赞
  • 内容获得44次评论
  • 获得525次收藏
  • 代码片获得2,164次分享
创作历程
  • 13篇
    2024年
  • 63篇
    2023年
成就勋章
TA的专栏
  • 重装系统后迁移环境和重新配置专栏
    3篇
  • GitHub仓库
  • Pycharm
    15篇
  • 分子库
    1篇
  • 电脑系统
    1篇
  • 人工智能药物设计
    5篇
  • Jupyter Notebook
    3篇
  • RDKit
    5篇
  • 包和模块专栏
    9篇
  • tensorflow
    2篇
  • 机器学习和深度学习
  • 机器学习和深度学习报错案例
    1篇
  • 机器学习
    4篇
  • 深度学习
    4篇
  • 特征和变量
  • 数据预处理
    3篇
  • 评价指标参数和模型参数
    14篇
  • pytorch
    2篇
兴趣领域 设置
  • Python
    pythonscikit-learn
  • 人工智能
    人工智能
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【重装系统后重新配置3】帮老项目设置 编译器

2.conda执行程序里 找到 E:\anaconda\Scripts\conda.exe。1. python interpreter 设置conda environment。
原创
发布博客 2024.11.05 ·
142 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【重装系统后重新配置2】pycharm 终端无法激活conda环境

pycharm 终端无法激活 conda 环境,但是 Windows本地终端是可以激活的。原因是pycharm 默认的终端是 Windows PowerShell。一、在设置里,修改为cmd。
原创
发布博客 2024.11.05 ·
328 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【重装系统后重新配置1】把Anaconda从硬盘恢复方法(亲测可用)

1.首先保证安装目录文件完整2.添加系统环境变量3然后进入安装目录打开cmd命令窗口,输入一下如下命令。
原创
发布博客 2024.11.04 ·
172 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

如何在GitHub上传自己的项目

Download GitHub Desktop | GitHub Desktop
原创
发布博客 2024.09.25 ·
136 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

[回归指标]相关性评价:R2、PCC(Pearson’s r )

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson’s r 只考虑直线。我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。在上面的图中,Pearson’s r 并没有显示研究对象的相关性。
原创
发布博客 2024.02.29 ·
3048 阅读 ·
11 点赞 ·
0 评论 ·
6 收藏

[分类指标]准确率、精确率、召回率、F1值、ROC和AUC、MCC马修相关系数

准确率(Accuracy):正确分类的样本个数占总样本个数,精确率(Precision)(查准率):预测正确的正例数据占预测为正例数据的比例,召回率(Recall )(查全率):预测为正确的正例数据占实际为正例数据的比例,F1 值(F1 score): 调和平均值,准确率、精确率、召回率、F1 值主要用于分类场景。准确率可以理解为预测正确的概率,其缺陷在于:当正负样本比例非常不均衡时,占比大的类别会影响准确率。
原创
发布博客 2024.02.29 ·
1607 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

[分子指纹]关于smile结构的理解

Q2改:C1C(C(C2C(C1)(C3C(CC2)(C4(C(=CC3)C5C(CC4)(CCC(C5)(C)C)C(=O)O)C)C)C)(C)C)O[C@@H]我的案例中有个奇怪的现象,我发现。
原创
发布博客 2024.02.27 ·
294 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【shap】使用shap画图时colorbar颜色条不能正常显示

参考上面的帖子,是matplotlib版本问题,我原来的版本是3.5.0,降级回3.4.3就正常了。下面,我的shap值全是蓝色的,没有红色。(注:蓝色是负贡献,红色是正贡献)
原创
发布博客 2024.02.20 ·
547 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

模型超参数寻优

参考某篇QSAR的sci论文设置。
原创
发布博客 2024.02.18 ·
296 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

关于怎么监督机器学习训练的进度

许多机器学习框架(例如TensorFlow和Keras)支持回调函数,它们可以在训练的不同阶段执行特定的操作。例如,可以使用回调函数记录每个epoch的性能指标,保存模型的检查点,动态调整学习率等。不知道大家有没有我这种烦恼,运行机器学习模型的时候,一直在哪运行,也不知道啥时候会结束,等也不是,不等也不是,又着急想看到结果。许多机器学习框架会在训练过程中输出日志信息,其中包含每个epoch的损失、准确率等指标。这些信息可以帮助你了解模型的训练进度。有些框架提供了用于可视化训练进度的进度条工具。
原创
发布博客 2024.02.18 ·
530 阅读 ·
4 点赞 ·
1 评论 ·
0 收藏

模块、包、库的区别

这三者都是通过import和from…import…语句实现的。
原创
发布博客 2024.02.17 ·
877 阅读 ·
16 点赞 ·
0 评论 ·
21 收藏

随机数选取经验

【代码】随机数选取经验。
原创
发布博客 2024.01.06 ·
395 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

热图分析(这个热力图代表的是不同描述符与pIC50之间的皮尔逊相关系数。)

相关系数的值通过色阶上的颜色来表示:负相关系数通常用冷色(如蓝色或紫色)表示,正相关系数通常用暖色(如红色或粉色)表示,接近零的相关系数通常用中性色(如白色或灰色)表示。例如,在这个热力图中,"Infective-50"与pIC50之间有一个0.46的相关系数,这是一个较强的正相关,表明"Infective-50"高的时候,pIC50也高。综上所述,这个热力图提供了一种快速可视化不同描述符与pIC50之间关系强度和方向的方法,但是具体的分析和结论需要依据研究的背景和附加的统计测试来做进一步的验证。
原创
发布博客 2024.01.06 ·
2136 阅读 ·
23 点赞 ·
0 评论 ·
26 收藏

关于mpatches包缺失的案例

我查资料发现,mpathches是在mtplotlib包中,在一次案例中,报错缺少mpathches包。
原创
发布博客 2023.12.18 ·
500 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

conda和pip配置国内镜像源

中国科技大学: https://pypi.mirrors.ustc.edu.cn/simple/清华:https://pypi.tuna.tsinghua.edu.cn/simple。阿里云:https://mirrors.aliyun.com/pypi/simple/华中理工大学:https://pypi.hustunique.com/山东理工大学:https://pypi.sdutlinux.org/豆瓣:https://pypi.douban.com/simple/添加镜像源(永久添加)
原创
发布博客 2023.12.18 ·
1230 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

GBDT算法原理以及实例理解

在分类树中最佳划分点的判别标准是熵或者基尼系数,都是用纯度来衡量的,但是在回归树中的样本标签是连续数值,所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。首先,GBDT使用的决策树是CART回归树,无论是处理回归问题还是二分类以及多分类,GBDT使用的决策树通通都是都是CART回归树。对于回归树算法来说最重要的是寻找最佳的划分点,那么回归树中的可划分点包含了所有特征的所有可取的值。为什么不用CART分类树呢?因为GBDT每次迭代要拟合的是梯度值,是连续值所以要用回归树。
转载
发布博客 2023.12.17 ·
138 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

xgboost机器学习算法通俗理解

通过这个例子,你可以更深入地理解 XGBoost 的原理:通过迭代训练多个决策树,每个决策树都试图纠正前面决策树的错误,最终将它们集成在一起,以获得更准确的预测结果。就像你在制作咖啡时,通过多次尝试和调整,最终得到了最好口味的咖啡一样,XGBoost 通过集成多个决策树的预测结果,得出了更准确的预测。通过这个例子,你可以理解 XGBoost 模型的原理:通过迭代训练多个决策树,每个决策树都试图纠正之前决策树的错误,最终将它们组合起来,以获得更准确的预测结果。想象一下,你正在准备一杯美味的咖啡。
原创
发布博客 2023.12.17 ·
929 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

使用jupyter notebook的便捷方法

但我们知道一个问题,pycharm中直接使用jupyter容易有些bug,但有些图,只有使用jupyter能出。2.anaconda里使用anaconda prompt,输入jupyter notebook + 路径。我的习惯是用Pycharm为主,jupyter为辅。1,先在pycharm里配环境,和各种包。
原创
发布博客 2023.12.16 ·
407 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

个人总结:机器学习分类模型评估指标 准确率、精确率、召回率、F1等以及关联规则支持度、置信度

也就是说,曲线上的每一个点代表着,在某一阈值下,模型将大于该阈值的结构判定为正样本,小于该阈值的结果判定为负样本,此时返回结果对应的真正率和假正率。A对B的提升度为:0.67/0.75 = 0.89 即以A作为前提,对B出现的概率有什么影响,如果提升度为1说明AB没有任何关联,如果小于1说明AB是互斥的,如果大于1,认为AB是有关联的,但在具体任务中认为提升度大于3才是值得认可的关联。理想的就是一个正方形。灵敏度求的是预测正确的正例与所有正例的比率,特异度求的是预测正确的负例与所有负例的比率。
转载
发布博客 2023.12.06 ·
614 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

关于支持向量机(SVM)的QSAR的结果的分析

图中的灰色部分代表了预测pIC50值与实测pIC50值之间的95%置信区间(confidence interval)。这个区间提供了一个预测误差的范围,意味着在统计上,我们有95%的把握认为真实值会落在这个区间内。具体来说,这个置信区间围绕着最佳拟合线(图中的虚线)而形成,显示了数据点在预测模型中的分散程度。简而言之,这个区间展示了模型预测的不确定性。
原创
发布博客 2023.12.06 ·
588 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏
加载更多