[分类指标]准确率、精确率、召回率、F1值、ROC和AUC、MCC马修相关系数

本文详细解释了准确率、精确率、召回率和F1值在分类任务中的作用,强调了它们在不平衡样本下的局限性。同时介绍了ROC曲线和马修斯相关系数(MCC)作为更全面的评估工具,特别是在处理样本不平衡时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准确率、精确率、召回率、F1值

定义:

1、准确率(Accuracy)

准确率指分类正确的样本占总样本个数的比例。准确率是针对所有样本的统计量。它被定义为:

 

准确率能够清晰的判断我们模型的表现,但有一个严重的缺陷: 在正负样本不均衡的情况下,占比大的类别往往会成为影响 Accuracy 的最主要因素,此时的 Accuracy 并不能很好的反映模型的整体情况。

例如,一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

2、精确率(Precision)

精确率又称为查准率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DJ.马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值