随机数选取经验

文章介绍了在QSAR项目中,如何通过randomSpliter函数对C2_cal_rdk.csv文件进行25%的测试集划分,提取训练集(tr_x)和测试集(te_y),并运用correlationSelection中的Pearson相关性方法分析特征之间的关联性。
摘要由CSDN通过智能技术生成
file = r"D:\academic\01_degree_doctor\01_project\mPGES\06_QSAR\C2_cal_rdk.csv"
for randx in [8,12,42,50,65,78,105]:
    spliter = randomSpliter(test_size=0.25,random_state=randx)
    spliter.ExtractTotalData(file,label_name='label')
    spliter.SplitData()
    tr_x = spliter.tr_x
    tr_y = spliter.tr_y
    te_y = spliter.te_y

    corr = correlationSelection()
    corr.PearsonXX(tr_x, tr_y)

在Python中,可以使用random模块或numpy模块来选取随机数。 如果你只需要生成一些基本的随机数,那么可以使用random模块提供的函数,比如random.randint(n, m)可以生成一个n到m之间的随机整数,random.random()可以生成一个0到1之间的随机浮点数,random.choice([])可以从列表中随机选择一个元素。 如果你需要更复杂的随机数操作,可以使用numpy模块。np.random模块提供了很多函数来生成各种类型的随机数,比如np.random.rand()可以生成N维均匀分布的随机数,np.random.randn()可以生成n维正态分布的随机数,np.random.randint(n, m, k)可以生成n到m之间的k个随机整数,np.random.random()可以生成n个0到1之间的随机数。 总的来说,如果你只是需要一些基本的随机数操作,可以使用random模块;如果需要更复杂的随机数操作,可以使用numpy模块。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python生成随机数](https://blog.csdn.net/m0_53653974/article/details/125753330)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python中随机数的取法](https://blog.csdn.net/fisherinriver/article/details/88693279)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DJ.马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值