file = r"D:\academic\01_degree_doctor\01_project\mPGES\06_QSAR\C2_cal_rdk.csv"
for randx in [8,12,42,50,65,78,105]:
spliter = randomSpliter(test_size=0.25,random_state=randx)
spliter.ExtractTotalData(file,label_name='label')
spliter.SplitData()
tr_x = spliter.tr_x
tr_y = spliter.tr_y
te_y = spliter.te_y
corr = correlationSelection()
corr.PearsonXX(tr_x, tr_y)
随机数选取经验
最新推荐文章于 2024-11-04 16:17:23 发布
文章介绍了在QSAR项目中,如何通过randomSpliter函数对C2_cal_rdk.csv文件进行25%的测试集划分,提取训练集(tr_x)和测试集(te_y),并运用correlationSelection中的Pearson相关性方法分析特征之间的关联性。
摘要由CSDN通过智能技术生成