bzoj 1071 [SCOI2007]组队 单调性

8 篇文章 0 订阅
7 篇文章 0 订阅

                                        bzoj  1071



Description

NBA每年都有球员选秀环节。通常用速度和身高两项数据来衡量一个篮球运动员的基本素质。假如一支球队里速度最慢的球员速度为minV,身高最矮的球员高度为minH,那么这支球队的所有队员都应该满足: A * ( height – minH ) + B * ( speed – minV ) <= C 其中A和B,C为给定的经验值。这个式子很容易理解,如果一个球队的球员速度和身高差距太大,会造成配合的不协调。 请问作为球队管理层的你,在N名选秀球员中,最多能有多少名符合条件的候选球员。

Input

第一行四个数N、A、B、C 下接N行每行两个数描述一个球员的height和speed

Output

最多候选球员数目。

Sample Input

4 1 2 10
5 1
3 2
2 3
2 1

Sample Output

4

HINT

数据范围: N <= 5000 ,height和speed不大于10000。A、B、C在长整型以内。



利用堆的O(n^2log n)的算法


题意 求满足 A*(a[i].h-minh)+B*(a[i].s-mins)<=C的最大个数


每个aa[i].h*A a[i].s*B

设个val=a[i].h+a[i].s)


按照a[i].s由大到小排序

扫一遍,用a[i].smins,同时更新minh 把不满足的(即 x.v>C+minh+mins

的元素移出堆 答案即每次最后堆中元素个数的最小值



为什么是 On^2log n)的呢


每次minh一定mins 递减 所以出堆的元素不会在进堆


#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
#include<algorithm>
#define MAXN 5010

using namespace std;

typedef long long ll;
ll n,A,B,C;
struct N{
  ll w,h,v;
  bool operator < (const  N a)const
  {
      return v<a.v;

  }


}a[MAXN];


bool cmp(N a,N b)
{
    return a.w>b.w;
}
priority_queue<int >q;
void init()
{
    cin>>n>>A>>B>>C;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i].h>>a[i].w;
        a[i].h*=A;
        a[i].w*=B;
        a[i].v=a[i].h+a[i].w;
    }
    sort(a+1,a+n+1,cmp);
    ll ans=1;
    for(int i=1;i<=n;i++)
    {
        ll minh=a[i].h,minw=a[i].w;
        while(!q.empty())
        q.pop();
        q.push(a[i].v);
        for(int j=1;j<=n;j++)
        if(i!=j&&a[j].h>=minh)
        {
            minw=min(minw,a[j].w);
            if(a[i].v>C+minh+minw)
            break;
            while(!q.empty()&&q.top()>C+minh+minw)
            q.pop();
            if(a[j].v<=C+minh+minw)
            {
                q.push(a[j].v);
                ans=max(ans,(ll)q.size());
            }
        }
    }
    cout<<ans<<endl;
}
int main()
{
    init();
    return 0;
}









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值