1.左手医生-智能医助
自然语言处理技术
- 语言理解:使用词法分析、句法分析、语义角色标注等技术,对患者输入的症状描述、问题等文本进行解析,理解其意图和语义。例如,准确识别患者提到的疾病症状、部位、持续时间等关键信息。
- 语言生成:基于理解的内容,以自然流畅的语言生成回答和建议。比如根据疾病知识和诊疗经验,生成针对患者问题的解释、诊断建议、治疗方案等表述,使回复符合人类语言习惯,便于患者理解。
医学知识图谱构建
- 数据收集与整理:整合来自人民卫生出版社医学书籍、药品说明书、医疗论文、医学百科等权威来源的医学知识,包括疾病知识、药物信息、症状表现、检查检验方法、治疗手段等。
- 知识抽取与表示:运用信息抽取技术,从海量文本数据中提取出实体(如疾病、药物、症状等)、关系(如疾病与症状的关联、药物与疾病的治疗关系等),并以图结构的形式进行表示,构建成医学知识图谱。
- 知识推理与更新:基于知识图谱的结构和已有的知识关系,进行推理计算,挖掘潜在的知识关联。同时,定期更新知识图谱,确保知识的准确性和时效性,以适应医学领域的不断发展。
智能交互模块
- 多轮对话管理:支持与患者进行多轮交互对话,能够根据上下文理解患者的问题和需求,引导患者提供更完整的信息,例如询问症状的细节、病史等,以更准确地进行诊断和建议。
- 个性化交互:根据患者的历史记录、偏好等信息,提供个性化的交互服务。比如记住患者的常用称呼、关注的疾病领域,在对话中使用更亲切、针对性的语言。
- 情感交互:在对话中融入情感计算技术,感知患者的情绪状态,给予适当的情感回应和安抚,增强患者的就医体验和信任度。
医疗大数据处理
- 数据收集:收集来自近 60 家三甲医院累计千万人次的脱敏数据、7000 万篇医学问答数据、医学科普文章、用户行为数据等多源医疗数据。
- 数据清洗与标注:对收集到的数据进行清洗,去除噪声和错误数据,然后进行标注,为后续的分析和模型训练提供高质量的数据支持。例如对疾病症状数据标注疾病类别、对医疗文本标注关键信息等。
- 数据分析与挖掘:运用数据分析和机器学习算法,对医疗大数据进行挖掘,发现数据中的规律和模式。如通过关联规则挖掘发现疾病与症状、治疗方法之间的关联,通过聚类分析对患者群体进行分类等,为智能诊断和建议提供数据依据。
智能诊断模块
- 症状匹配与分析:将患者输入的症状与医学知识图谱中的疾病症状进行匹配,计算相似度和概率,找出可能对应的疾病。
- 综合诊断推理:结合患者的病史、检查检验结果等多维度信息,运用基于规则的推理、基于案例的推理等方法,进行综合诊断,给出可能的疾病诊断结果和置信度。
- 治疗建议生成:根据诊断结果,从知识图谱中获取相应的治疗方案、药物推荐、康复建议等信息,为患者提供全面的治疗指导。
云原生架构支持
- 容器服务:采用容器服务(如 ACK)将原有服务容器化并迁移到集群上,实现服务的动态伸缩、滚动升级与灰度发布等功能,提升资源管理和应用交付效率,减少 K8s 运维工作。
- 微服务治理:引入微服务引擎(如 MSE),提供服务注册发现、配置管理、限流降级等功能,增强系统的稳定性与韧性,帮助实现服务平滑升级。
- 监控与分析:集成应用实时监控服务(如 ARMS)实现对分布式系统的深度监控和性能分析,包括全链路追踪、实时性能监控、异常检测等功能,快速定位问题和优化性能。
- 消息队列:使用消息队列(如 Kafka)作为核心的消息中间件组件,处理业务解耦、异步处理及数据流场景,确保系统间通信高效可靠。
2.科飞医疗-全科医生助理
数据对接与预处理
与医疗机构信息系统进行对接,收集患者的诊疗信息,包括临床表现(如主诉、现病史等病历信息)以及检查检验信息。对这些数据进行清洗和预处理,使其符合后续分析的要求,为准确的诊疗辅助奠定基础。例如,去除数据中的噪声和错误信息,统一数据格式等。
基于知识库和引擎的分析
利用医疗知识库和医疗 AI 辅助诊疗引擎对预处理后的数据进行深入分析。医疗知识库整合了大量的医学知识,如疾病的症状、诊断标准、治疗方法等。辅助诊疗引擎则运用人工智能算法,如机器学习、深度学习等技术,挖掘数据中的潜在规律和关联。通过两者的结合,能够更准确地分析患者病情,例如根据患者的症状组合和检查结果,在知识库中查找匹配的疾病模式,并通过引擎计算各种疾病的可能性。
诊疗辅助功能实现
诊断与治疗建议
根据分析结果生成临床诊断与治疗推荐建议,为医生的临床决策提供智能辅助支持。在生成建议时,综合考虑多种因素,如疾病的常见性、患者的个体特征(年龄、性别、病史等)等,使建议具有针对性和实用性。
问诊引导与病历生成
引导医生进行系统化问诊,防止关键信息漏问。在问诊结束后,快速生成规范化病历,提高病历书写的质量和效率。通过预设的问诊流程和模板,提醒医生询问必要的信息,并自动将收集到的信息整理成规范的病历格式,节省医生的时间和精力。
病历质检
对医生书写病历的完整性、规范性及合理性进行实时质检。利用自然语言处理技术和预定义的质检规则,检查病历中是否存在信息缺失、表述错误或逻辑不合理的地方,并及时反馈给医生进行修改,有助于提高病历的质量。
诊断提醒与用药辅助
结合患者实际情况智能化推荐疑似疾病,在医生诊断与系统推荐不一致时给予提醒,促进医生进一步思考和验证诊断结果。同时,通过对患者病情和处方信息的分析审核处方合理性,对高风险用药进行智能预警和干预,保障患者用药安全,提升处方合理率。
知识检索与学习支持
提供复合式检索方式,方便医生对疾病知识、用药分析、临床操作等医学资源进行检索。这种检索方式可以是关键词检索、分类检索或语义检索等多种形式的结合,使医生能够快速准确地找到所需的医学知识。此外,还提供线上知识学习路径,如推荐相关的医学文献、培训课程等,帮助医生不断丰富诊疗知识,提升专业水平。
数据统计与决策支持
对业务数据进行多维度统计分析和挖掘,例如分析疾病的发病率、治疗效果、用药情况等数据。通过这些数据分析,为医疗管理工作提供数据支撑,辅助管理层进行决策,如资源配置、医疗质量改进等方面的决策,促进医疗机构的科学管理和发展。
数据对接与预处理过程
接口适配与数据获取
系统会针对不同医疗机构的信息系统架构和数据接口标准,开发专门的适配程序。这些程序能够与医疗机构的电子病历系统(EMR)、实验室信息管理系统(LIS)、影像归档和通信系统(PACS)等进行安全、稳定的连接。通过这些接口,系统可以获取患者的各类诊疗信息,如患者的基本信息(姓名、性别、年龄、联系方式等)、主诉(患者自述的主要症状和问题)、现病史(疾病发生、发展及演变的过程)、既往史(过去的疾病史、手术史、过敏史等)、检查检验报告(血液检查、生化检验、影像检查结果等)。例如,在与 EMR 系统对接时,可能会使用 HL7(Health Level 7)等标准协议来传输和接收数据,确保数据的兼容性和准确性。
数据清洗
在获取数据后,首先进行数据清洗操作。这包括去除数据中的噪声和错误数据,例如一些不完整的记录、重复的数据、明显不符合医学逻辑的数据(如年龄超出正常范围的异常值)。同时,对一些模糊或不规范的表述进行标准化处理,比如将不同的时间格式统一为标准格式,对医学术语的缩写进行扩展和规范。例如,如果病历中出现 “DM”(可能是糖尿病 “Diabetes Mellitus” 的缩写),会将其转换为完整的医学术语,以便后续分析。
数据整合与关联
将从不同系统获取的患者数据进行整合,建立起患者完整的诊疗信息档案。例如,将 LIS 中的检验结果与 EMR 中的病历信息进行关联,使医生在查看患者病历的同时能够方便地获取到相应的检查检验数据。通过患者的唯一标识(如病历号或患者 ID)进行数据的关联和匹配,确保不同来源的数据能够准确地对应到同一患者身上,形成一个完整的、相互关联的数据集合,为后续的分析和诊断提供全面的信息支持。
数据质量评估与监控
建立数据质量评估机制,对数据的完整性、准确性和一致性进行持续监控。通过设定一些数据质量指标,如必填字段的完整率、数据的准确性比例等,定期对数据进行评估。如果发现数据质量问题,会及时进行反馈和修复,确保进入后续分析流程的数据质量可靠。例如,如果发现某个时间段内大量患者的检查检验结果缺失,系统会发出警报,提示相关人员进行检查和处理,以保证数据的完整性和可用性。
3.云知声-临床辅助决策
知识构建与管理
知识抽取与融合:基于自然语言处理技术,从临床指南、药品说明书、医学文献等权威医疗文本中抽取医疗知识。采用低资源知识抽取技术,利用 BERT 等预训练框架,并结合远程监督、领域迁移学习等方法,降低对大量人工标注数据的依赖,抽取实体(如疾病、症状、药物等)、关系(如疾病与症状的关联、药物与疾病的治疗关系等)和事件。同时,通过实体对齐、归一化处理、指代消歧等方式实现知识融合,将不同来源的知识整合到统一的知识图谱中。例如,将不同医学文献中关于某种疾病的不同表述统一为标准的医学术语,并建立其与相关症状、治疗方法的准确关系。
知识建模与编辑:支持对图谱 Schema 中的实体、属性、关系和事件进行定义及编辑。可以根据临床领域的特点,构建疾病分类体系、药物作用机制模型等。例如,定义疾病的不同类型、严重程度等属性,以及药物与疾病之间的治疗、禁忌等关系,并能够方便地进行修改和完善。同时,支持图谱 Schema 的发布、引用和导入导出,便于知识的共享和更新。
知识存储:采用关系数据库、NoSQL 数据库和图数据库混合存储的架构,根据知识的特性选择合适的存储模式。能够支持亿级到千亿级三元组的存储,并且具备线性横向扩展能力,以满足临床大量医疗知识的存储需求。例如,对于结构化较强的疾病基本信息可能存储在关系数据库中,而对于复杂的疾病症状与治疗关系网络则存储在图数据库中,以提高查询和推理效率。
知识图谱服务
推理服务:利用建立的知识图谱和各种推理算法,如基于规则的推理、基于案例的推理等,为临床辅助决策提供支持。在面对患者的症状和病史时,通过推理分析可能的疾病诊断,并提供相应的治疗建议。例如,如果患者出现发热、咳嗽等症状,结合知识图谱中疾病与症状的关联关系,推理出可能的疾病(如感冒、肺炎等),并进一步根据疾病的治疗原则推荐相应的检查和药物治疗方案。
图计算服务:提供多种基于图模型的分析算法,包括子图分析、社群发现、路径分析、关联分析、图中心性分析等。在临床辅助决策中,可以通过这些算法分析疾病之间的关联、药物的相互作用网络等。例如,通过路径分析找出从某种症状到可能的疾病诊断的推理路径,帮助医生理解诊断过程;通过关联分析发现同时出现的症状与特定疾病的相关性,提高诊断的准确性。
临床应用功能实现
病历理解与分析:基于自然语言理解技术,让系统能够理解病历内涵。对电子病历中的文本进行实体发现与链接、关系抽取等操作,将病历中的信息与知识图谱中的知识进行关联。例如,识别病历中提到的疾病名称、症状描述、检查检验结果等,并与知识图谱中的标准术语和知识进行匹配,从而能够对病历的完整性和准确性进行评估,筛查出书写不规范、诊疗不合理等内涵缺陷,辅助病历质控人员快速定位问题。
辅助诊断与治疗建议:结合患者的病历信息和知识图谱中的医学知识,为医生提供辅助诊断和治疗建议。通过对患者症状、病史、检查结果等多维度信息的综合分析,在知识图谱中查找相似的病例和治疗方案,为医生提供参考。例如,对于一位患有复杂疾病的患者,系统可以根据知识图谱中类似病例的治疗经验,推荐可能有效的治疗方法和药物组合,并提醒医生注意可能的风险和并发症。同时,在治疗过程中,还可以根据患者的病情变化和治疗效果,动态调整建议,实现个性化的临床辅助决策。