题目:
不使用任何库函数,设计一个 跳表 。
跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。
例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 80、45 到跳表中。
跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)。
了解更多 : https://en.wikipedia.org/wiki/Skip_list
在本题中,你的设计应该要包含这些函数:
bool search(int target) : 返回target是否存在于跳表中。
void add(int num): 插入一个元素到跳表。
bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。
注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。
示例 1:
输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]
解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0); // 返回 false
skiplist.add(4);
skiplist.search(1); // 返回 true
skiplist.erase(0); // 返回 false,0 不在跳表中
skiplist.erase(1); // 返回 true
skiplist.search(1); // 返回 false,1 已被擦除
提示:
0 <= num, target <= 2 * 104
调用search, add, erase操作次数不大于 5 * 104
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/design-skiplist
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
没看太明白,原题目中有动态图解从而来更加直观的表述该问题。
代码:
static constexpr int LEVEL_LIMIT = 16;
struct Node {
int val;
Node *next[LEVEL_LIMIT];
Node(int node_value = -1)
: val(node_value),
next{nullptr}
{
}
};
class Skiplist {
public:
Skiplist() : max_level(0), dummy() {
}
bool search(int target) {
return node_cnt.count(target);
}
void add(int num) {
if (node_cnt.count(num)) {
node_cnt[num]++;
return ;
}
node_cnt[num]++;
//path[i] is the last node with val less than num in level i
Node *new_node = new Node(num);
vector<Node*> path(max_level + 2, nullptr);
Node *pre = &dummy;
for (int i = max_level; i >= 0; i--) {
while (pre->val < num && pre->next[i] != nullptr && pre->next[i]->val < num) {
pre = pre->next[i];
}
path[i] = pre;
}
//rise with probability 50%
//highest level that can be risen to is max_level + 1
int n = min(max_level + 1, LEVEL_LIMIT - 1);
for (int i = 0; i <= n; ++i) {
if (i <= max_level) {
new_node->next[i] = path[i]->next[i];
path[i]->next[i] = new_node;
}
else {
//path[0] id dummy
if (path[0]->val == -1) {
dummy.next[max_level + 1] = new_node;
}
else {
Node *& first_node = dummy.next[0];
dummy.next[max_level + 1] = first_node;
first_node->next[max_level + 1] = new_node;
}
max_level++;
}
if ((i >= max_level || path[i]->val != -1) && (rand() % 100) < 50) {
break;
}
}
}
bool erase(int num) {
//num doesnt exist
if (!node_cnt.count(num)) {
return false;
}
node_cnt[num]--;
if (node_cnt[num] > 0) {
return true;
}
if (node_cnt[num] == 0) {
node_cnt.erase(num);
}
//path[i] is the last node with val less than num in level i
vector<Node*> path(max_level + 1, nullptr);
Node *pre = &dummy;
Node *node_to_erase = nullptr;
for (int i = max_level; i >= 0; i--) {
while (pre->val < num && pre->next[i] != nullptr && pre->next[i]->val < num) {
pre = pre->next[i];
}
if (pre->next[i] != nullptr && pre->next[i]->val == num) {
node_to_erase = pre->next[i];
path[i] = pre->next[i];
}
}
if (node_to_erase == nullptr) {
return false;
}
else {
for (int i = 0; i <= max_level; ++i) {
if (path[i] == nullptr) {
break;
}
path[i]->next[i] = node_to_erase->next[i];
}
//delete node_to_erase;
return true;
}
}
private:
int max_level;
Node dummy;
unordered_map<int,int> node_cnt;
};
/**
* Your Skiplist object will be instantiated and called as such:
* Skiplist* obj = new Skiplist();
* bool param_1 = obj->search(target);
* obj->add(num);
* bool param_3 = obj->erase(num);
*/