扩展欧几里得讲解

扩展欧几里得(exgcd):
用途:求不定方程的解
根据裴蜀定理 可知:当 ax+by=c有解的充分必要条件为 gcd(a,b) | c
因此方程就转化为了 ax+by=gcd(a,b)
《快乐求解》:
1.令 x’ y’,满足 b x ′ + a % b y ′ = g c d ( b , a % b ) = g c d ( a , b ) bx'+a\%by'=gcd(b,a\%b) =gcd(a,b) bx+a%by=gcd(b,a%b)=gcd(a,b)
2.因此此式与原式右边相等,可得:
a x + b y = b x ′ + ( a − [ a / b ] ∗ b ) y ′ ax+by=bx'+(a-[a/b]*b)y' ax+by=bx+(a[a/b]b)y
3.将右边移项得 a x + b y = a y ′ + b ( x ′ − [ a / b ] y ) ax+by=ay'+b(x'-[a/b]y) ax+by=ay+b(x[a/b]y)
解得 { x = y ′ y = x ′ − [ a / b ] y \left\{\begin{matrix}x=y'\\y=x'-[a/b]y\end{matrix}\right. {x=yy=x[a/b]y
当b = 0时,a就是这两个数的最大公约数,所以x = 1 , y = 0 时就满足等式。
当b ≠ 0 时就先算出当a = b , b = a   m o d  b时等式成立的x 和y ,显然新的a 和b 的最大公约数和原来是相同的。

当求 ax+by=c 时,我们只需要将答案都*(c/gcd(a,b))即可
Code

void exgcd(int a,int b,int &x,int &y,int &g){
	if(b==0){
		x=1,y=0;
	}
	else{
		exgcd(b,a%b,g,x,y);
		int k=x;
		x=y;
		y=k-(a/b)*y;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值