扩展欧几里得等式有解证明

扩展欧几里得:a*x+b*y=Gcd(a,b);(x,y为整数)

       证明:原式=k1* Gcd(a,b)*x+k2* Gcd(a,b)*y= Gcd(a,b);

                       =>k1*x+k2*y=1;(k1,k2互质)

                       =>x=(1-k2*y)/k1;

                       =>x=1-k2*yk1(若x为整数,则1-k2*y对k1整除)

                       =>x=1-k2*(x*k1/k2-1/k2)k1

若y也为整数,则  (x*k1-1)%k2=0;

即证,存在x,使得(x*k1-1)%k2=0;令x=n*k2+r;(0<=r<=k2-1);∴原式=(r*k1-1)%k2=0;

 

设k1,k2的最小公倍数为p,p=k1*k2( ∵k1,k2互质 )

对于:0<=r<=k2-1中的每一个取值;r*k1%k2 的值不同;

反证法:设存在ri*k1%k2=rj*k1%k2;(r1!=r2)

    则 ri*k1%k2=(rj*k1+m*p)%k2=(rj*k1+m*k1*k2)%k2 =[(rj+m*k2)*k1]%k2

    若 m=0,则ri=rj;若m!=0,则 |ri-rj|=m*k2;

∴ 对于0<=r<=k2-1中的每一个取值;r*k1%k2 的值不同;

 即 0<=ri<=k2-1,ri*k1%k2与集合(0,1,2,3……k2-1)一一对应关系

∴  0<=ri<=k2-1,(ri*k1-1)%k2与集合(0,1,2,3……k2-1)一一对应关系

       对于(ri*k1-1)%k2=0,存在0<=ri<=k2-1使得式子成立;

∴ 存在一对整数x,y使得a*x+b*y=Gcd(a,b);

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值