线性回归
- 优点:
1、简单,运算速度块
2、可以根据系数对变量做出解释 - 缺点:
1、对异常值敏感
LR
- 优点:
1、形式简单,可解释性好
2、模型效果好
3、训练速度快
4、资源占用少,尤其是内存
5、方便输出结果的调整(人工设定阈值) - 缺点:
1、准确率可能并不是很高
2、很难处理数据不平衡的问题
3、处理非线性数据麻烦
4、LR本身无法筛选特征
5、对异常值敏感
SVM
- 优点:
1、svm再中小量样本规模的时候容易得到数据和特征之间的非线性关系,可以避免使用神经网络结构选择和局部极小值问题,可解释性强,可以解决高维问题。
2、抗噪能力强 - 缺点:
1、对缺失数据敏感,对非线性问题没有通用的解决方案,核函数的正确选择不容易,计算复杂度高,不使用于大规模的数据。
LR和SVM的区别:
- 相同点ÿ