ML模型特点以及区别

本文详细对比了线性回归(LR)、支持向量机(SVM)的特点,包括它们的优缺点,如LR的简单快速但对异常值敏感,SVM在处理非线性问题上的优势但计算复杂度高。同时,提到了其他模型如随机森林(RF)和梯度提升决策树(GBDT)的优势和不足,以及Bagging和Boosting的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.csdn.net/b285795298/article/details/81977271


线性回归

  • 优点:
    1、简单,运算速度块
    2、可以根据系数对变量做出解释
  • 缺点:
    1、对异常值敏感

LR

  • 优点:
    1、形式简单,可解释性好
    2、模型效果好
    3、训练速度快
    4、资源占用少,尤其是内存
    5、方便输出结果的调整(人工设定阈值)
  • 缺点:
    1、准确率可能并不是很高
    2、很难处理数据不平衡的问题
    3、处理非线性数据麻烦
    4、LR本身无法筛选特征
    5、对异常值敏感

SVM

  • 优点:
    1、svm再中小量样本规模的时候容易得到数据和特征之间的非线性关系,可以避免使用神经网络结构选择和局部极小值问题,可解释性强,可以解决高维问题。
    2、抗噪能力强
  • 缺点:
    1、对缺失数据敏感,对非线性问题没有通用的解决方案,核函数的正确选择不容易,计算复杂度高,不使用于大规模的数据。

LR和SVM的区别:

  • 相同点ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值