ML模型评估

一、评估方法

留出法hold-out

留出法直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集S,另一个作为测试集T,即 D = S ∪ T , S ∩ T = ∅ D=S \cup T,S \cap T = \varnothing D=ST,ST=,在 S S S上训练处模型后,用 T T T来评估其测试误差,作为对泛化误差的估计。

注意:训练/测试集的划分要尽可能保存数据分布的一致性,避免因数据划分过程引入额外的偏差而对最终结果产生影响。——例如,在分类任务中至少要保存样本的类别比例相似。

交叉验证cross validation

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EascKweB-1631628585490)(res/image-20210914210538822.png)]
在这里插入图片描述

自助法

以自助采样法为基础,对数据集D有放回采样m次得到训练集 , 用做测试集

​ 实际模型与预期模型都使用m个训练样本

​ 约有1/3的样本没在训练集中出现,用作测试集

​ 从初始数据集中产生多个不同的训练集,对集成学 习有很大的好处

​ 自助法在数据集较小、难以有效划分训练/测试集时很有用;由于改变了数据集分布可能引入估计偏差 ,在数据量足够时,留出法和交叉验证法更常用。

二、评估指标

(一)回归问题

均方误差

均方误差是回归任务最常用的性能度量,表示预测值和实际值之间的误差。
M S E = 1 n ∑ i = 1 n ( y ^ i − y i ) 2 MSE=\frac{1}{n}\sum_{i=1}^{n}(\widehat{y}_i-y_i)^2 MSE=n1i=1n(y iyi)2

(二)分类问题

真实情况预测结果
正例反例
正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

精度:分类正确的样本占总样本的比例 TP+FN/总例数
查准率:预测正确的样本中实际为正确的比例 TP/(TP+FP)
查全率:正例中预测正确的比例 TP/(TP+FN)
F1:查准率和查全率的平均
ROC与AUC
许多机器学习方法分类的方式是为测试样本产生一个实值(或概率预测),并将其与设定好的阈值相比较,大于阈值的分为正类,小于阈值的分为负类。我们可以根据实值的大小,即按是正例的可能性将样本进行排序。分类过程就是在这个排序中找到某个“截断点”将前面一部分判做正例,后面一部分判做反例。
ROC曲线是以每一个实值作为阈值,并衡量模型性能的方法。它以真正例率TPR=TP/(TP+FN)为横坐标,假正例率FPR=FP/(TN+FP)为横坐标。每次按顺序尝试一个实值作为阈值进行测试。
真正例率和反正例率的分母是实际的正例和反例数量,是一个固定的数,因此他们与TP和FP成正比。
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值