2020 CSP-J 多校赛 T1

零 (zero)

  • 内存限制:512MB
  • 时间限制:500ms
  • 文件输入输出
    • 输入文件:zero.in
    • 输出文件:zero.out

题目

题目背景

14 喜欢玩序列

题目描述

14 14 14 有一个长度为 n n n 的序列 a a a,他规定一个序列的 特征序列 s s s 的生成方式为:
对于 ∀ 1 ≤ i ≤ n , s i = ∑ j = 1 i a j \forall 1 \leq i \leq n,s_i = \sum_{j = 1}^{i} a_j ∀1insi=j=1iaj
14 14 14 规定:如果一个序列 q q q美丽序列,当且仅当序列 q q q特征序列 中每个元素都不为 0 0 0
14 14 14 想知道能不能将一个序列 a a a 重排为一个序列 b b b,使得序列 b b b 是一个 美丽序列

  • 如果可以,请告诉他 YES
  • 否则告诉他 NO

由于 14 14 14 有很多个序列想要问你,所以对于每个序列都要告诉他答案

格式

输入格式 (zero.in)

输入第一行,一个整数 T T T,表示 14 14 14 手中序列的个数
对于每一个序列:

  • 第一行,一个整数 n n n,表示序列的长度
  • 第二行, n n n 个整数,表示序列 a a a
输出格式 (zero.out)

输出共 T T T 行,对于第 i i i 行,输出一个字符串 (YESNO) 表示你的答案

样例

样例输入
2
2
1 2
5
-1 1 1 -1 0
样例输出
YES
NO

提示

数据范围

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1 0 6 1 \leq n \leq 10^6 1n106 ∑ n ≤ 3 × 1 0 6 , 0 ≤ a i ≤ 1 0 9 \sum n \leq 3 \times 10^6,0 \leq a_i \leq 10^9 n3×1060ai109


思路

对于序列 p p p,记它的特征序列为 q q q
q i = p 1 + p 2 + p 3 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + p i q_i = p_1 + p_2 + p_3 + ······ + p_i qi=p1+p2+p3+⋅⋅⋅⋅⋅⋅+pi
就是 p p p 序列前 i i i 项的前缀和

我们可以把序列 a a a 0 0 0 的数全部放在序列的后面,因为 0 0 0 是不影响我们的前缀和
后面的 0 0 0 可以不用考虑,只考虑前面不为 0 0 0 的数


分析

(以下序列都是忽略了 0 0 0 的)
b b b特征序列 c c c
c c c 的 第 i i i 项 是 b b b i i i 项 的前缀和
所以我们要尽力保证 c i c_i ci 不为 0 0 0

我们可以 逆推
如果最后一位 c n c_n cn 0 0 0,则 c c c 不是 美丽序列
如果 c n c_n cn 不是 0 0 0,那么 c n − 1 c_{n - 1} cn1 一定能保证不为 0 0 0,以此类推(至于为什么,就留给读者自己思考了)

所以我们只需要累加序列 a a a 的每一个数 a i a_i ai,判断它是否为 0 0 0 即可


代码

#include <cstdio>

void Read(long long &n)
{
	n = 0LL;
	bool f = 1;
	char C = getchar();
	while (C < '0' || C > '9')
	{
		if (C == '-') f ^= 1;
		C = getchar();
	}
	while ('0' <= C && C <= '9')
	{
		n = (n << 3LL) + (n << 1LL) + (C ^ 48);
		C = getchar();
	}
	if (!f) n = -n;
}

int main()
{
	freopen("zero.in", "r", stdin);
	freopen("zero.out", "w", stdout);
	long long T, N, A;
	Read(T);
	while (T--)
	{
		Read(N);
		long long cnt = 0LL;
		for (long long i = 1LL; i <= N; i++)
			{ Read(A); cnt += A; }
		if (!cnt) printf("NO\n");
		else printf("YES\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值