数学建模(九)决策论建模

决策论也称决策分析,是在机会和风险并存的复杂情况下,帮助人们选择各种办法的数学模型和数学工具的结合。在多数情况下我们的选择使明确的,信息也是确定的,这种情况下的假设称为确定性的。
但是多数情况下风险与机会是并存的,建立模型可以帮助我们作出决策时同时考虑这两者,这种情况本质上是不确定的,称为随机性,因为其未来的状态由可预测的因素和随机因数共同决定。

举例:
玩转盘游戏,假如转盘是公平的,各有50%的机会获得10元或者0元,并且每一次需要支付4元的费用。
解答
如果转盘是公平的,会有一半的机会转到0,另外一半的机会转到10,平均每次得到5,由于转一次需要付4元,而结果是0或10,所以或者输4元或者赢6元,所以转一次的平均收益或者期望E为:
**E=(0-4)0.5+(10-4)0.5=1;
这样我们可以计算出,如果玩这个游戏100次,那么期望可以得到100元,考虑到任何结果都可能出现,所以存在着风险,例如你可能开始转了一连串的0,付费就会超过你带的钱。
在决策中有个重要的差别是,决策是实施一次还是重复多次。

举例:
有一个游戏,假如有26个盒子,每个盒子里有0.01-1000000元不等数额的钱币,玩家开始时选一个盒子在身边,然后打开剩余25个盒子里面的6个,展示其中的钱数,然后把它们移开,在每一轮打开指定数量的盒子后,庄家会拿出一个deal做为报酬,即让玩家在停止游戏并得到一笔报酬与继续打开剩下的盒子之间二选一。假设现在只剩下两个盒子,是0.01和1000000,并且你只能选择打开其中的一个,如果庄家拿出400000让你停止选择,你会怎么选?

**解答:**如果继续玩则平均收益为:
E=0.010.5+1000000O.5=500000:
这个数额是超过400000的报酬,如果你多玩几次这个游戏,就不应该要400000的deal去得到平均每次100000的收益,如果你只玩一次并且拒绝庄家报酬,在接受报酬与继续玩游戏之间的区别是:
A:0.01-400000=-400000;
B:1000000-400000=600000;
于是你冒400000的风险去换取600000的外快,该如何抉择,我们将研究更适合一次性抉择而非使平均收益最大化的决策准则。

在决策中另一个重要区别是,每个事件出现的概率是已知还是未知。

9.1 概率和期望值
举例说明:假设扔骰子两次,两次和微7就赢,否则输。玩一次付费1元,如果赢则获得6元,如果一个晚上玩100次,你能赢或者输多少钱。这里需要说明两点:事件的概率和期望值。事件的概率=有利结果次数/结果总数。还有一个知识点是加权平均
在这里插入图片描述
回到上述骰子问题,两次和为7的次数是6,其他为30次,所以期望值是:
E=5*1/6+(-1)*5/6=0;所以这个玩法相对还是很公平的。

举例:人寿保险:
一家保险公司买一份保险,受保人需要交付550元,从而可以得到250000的保额,假如这个首保人一年的存活率是0.99791,计算这个保险单给保险公司带来的期望收益。
解答:期望值 E=5500.99791+250000(1-0.99791)=25元,所以每卖出一份保单保险公司可以得到25元。

举例:轮盘赌:
期望值常见的应用是博彩,例如一个轮盘有38个等可能出现的结果,赌单个数字的赢家的赔率是35:1,每次玩需要支付1元钱,计算玩家的收益期望值:
解答:期望值 E=(-1)*37/38+(36-1)*1/38=-0.05;也就是说每1元的赌注平均输掉5分钱,这就是庄家优势。

举例:新建或改建建筑:
新建一个建筑投标率是20%,投标金额是1000元,投中后会赢得50000元,假如改建一个建筑投标率是25%,投标金额是500元,投中后会赢得40000元,分别计算他们的期望值并决定选择哪一种:
E(新建)=50000*0.2+(-1000)0.8=9200;
E(改建)=40000
0.25+(-500)*0.75=9625;
所以从长期来看,改建现有的建筑更加赚钱。

9.2:决策树:
决策树通常用来表述和分析决策者可以采取的抉择,不确定性节点,对每个可能的出口有一个出口分支,以反映其发生的可能性(自然状态),例如上述改建建筑的例子中运用决策树:可以得到如下:
在这里插入图片描述
9.3:序列决策和条件概率:
例如多次旋转轮盘赌:
在这里插入图片描述
对于多种选择的建造工厂:
在这里插入图片描述
9.4:利用各种准则的决策
前面所述的用期望值最大作决策,若长时间重复这个决策很多次,这样做法是没有问题的,但是很多时候都是只进行一次,或者在进行多次决策时是有风险的。以下就3种情形进行分析。
第一种情形:一次性决策,概率已知,最大化期望值:
所用准则:最大化期望值准则: 计算每种策略的期望值,选取最大值,

第二种情形:一次性决策,概率未知:
所用准则:拉普拉斯准则: 这个准则假定未知概率都是相等的,因此可以简单地将每项投资的回报加以平均,这等价于选择总和最大的投资策略。

所用准则:最大最小准则: 这是我们研究博弈论时反复运用的一个非常重要的准则。这里要计算每个策略时所得的最坏结果,可以将它作为该策略的下限,并且选取具有最高下限的策略,也就是计算每个策略的最小,然后选取这些最小的最大。称之为最大最小。这是一种保守策略,如果在短期内最保守的策略能让新公司积累足以度过困难时期的资金,那么就会考虑最大最小准则。

第三种情形:“费用最小化”
上面的几种情形的目标是使项收益这样的数值最大,也有很多情形是使像费用这样的数值最小,对这样的情形有两种准则:
所用准则:最小最大准则: 这是我们研究博弈论是反复运用的一个决策准则,假设一个策略所需要花费的费用为A元,最小最大准则对每个策略给出一个上限(每个策略的最大费用),然后选取这些费用的最小,即最小最大。

  • 6
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值