自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 11、论文阅读:无监督夜间图像增强:层分解与光效抑制的结合

夜间图像不仅受到低光的影响,而且还受到光的不均匀分布的影响。现有的夜间能见度增强方法大多集中在增强弱光区域。这不可避免地导致明亮区域中的过度增强和饱和,例如受光效应(眩光、泛光灯等)影响的那些区域。为了解决这个问题,我们需要抑制明亮区域中的光效应,同时提高暗区域的强度。考虑到这个想法,我们引入了一种无监督的方法,它集成了层分解网络和光效应抑制网络。给定一张夜间图像作为输入,我们的层分解网络学习分解阴影,反射和灯光效果层,由无监督的特定层先验损失指导。我们的光效应抑制网络进一步。

2024-10-09 14:42:01 806

原创 10、论文阅读:基于双阶对比损失解纠缠表示的无监督水下图像增强

在水下环境中拍摄的图像通常会受到颜色失真、低对比度和视觉质量下降的影响。大多数现有的方法通过对合成图像或伪参考进行有监督的训练来解决水下图像增强(UIE)问题。然而,由于合成的配对数据与真实世界数据之间存在固有差异,这些数据无法准确复制真实情况,同时伪参考的数量和质量也有限,这在对真实水下图像进行测试时严重降低了模型的泛化能力和性能。相比之下,无监督的方法不受配对数据的限制,更加稳健,并在实际应用中具有更大的潜力。然而,现有的无监督方法无法有效约束网络来训练一个可以适应各种退化情况的模型。

2024-10-07 19:09:54 1212

原创 9、论文阅读:无监督的感知驱动深水下图像增强

当前的 UIE 算法主要通过最小化增强图像和地面真实图像之间的重建损失,在合成数据集或具有伪标签的数据集上训练深度神经网络(DNN)。但是,合成和真实的水下图像有差距,在合成图像上训练的网络在真实环境下不一定有好的表现。并且使用L1和L2损失函数,往往忽视人类感知的重要性,(L1和L2损失只关注像素级别的差异,没有考虑人类视觉系统的感知特性。人类的眼睛对边缘和纹理的变化敏感,但是对颜色变化相对不敏感。为此,可以使用感知损失或者风格迁移损失 ​),导致增强的图片不尽人意。因此,本论文提出了一个。

2024-09-27 15:56:17 971

原创 8、RCNN介绍及实现

R-CNN论文解读/总结 详细笔记

2024-09-24 20:25:21 115

原创 7、论文阅读:20 年来的物体检测:一个调查

本文从技术演变的角度广泛回顾了这个快速发展的研究领域(1990s - 2022s)。本文涵盖了许多主题,包括历史上的目标检测的里程碑检测数据集指标检测系统的基本构建模块加速技术和最新的最先进的检测方法。

2024-09-23 21:12:36 861

原创 6、论文阅读:水下图像增强基准数据集及其他数据集

大多数已经提出的水下增强算法都是使用合成数据集或少数选定的真实世界图像,这使得我们无法估计算法在真实环境下的表现。为了解决这个问题,我们提出了UIEB数据集,包括 950 张真实水下图像,其中 890 张有相应的参考图像。我们将其余60张无法获得满意参考图像的水下图像视为具有挑战性的数据。我们使用这个数据集评估了许多先进的水下图像增强的算法。此外,我们还提出了一个新的水下图像增强网络Water-Net,它使用这个数据集进行训练。基于补充信息的方法基于非物理模型的方法基于物理模型的方法和数据驱动的方法。

2024-09-20 18:31:04 724

原创 5、论文阅读:深水下的图像增强

水下场景中,与波长相关的光吸收和散射会降低图像的可见度,导致对比度低和色偏失真。为了解决这个问题,我们提出了一种基于卷积神经网络的图像增强模型,UWCNN,它使用合成水下图像数据库进行有效训练。我们的模型利用自动端到端和数据驱动的训练机制直接重建清晰的潜在水下图像。符合水下成像模型和水下场景的光学特性,我们首先合成十种不同的海洋图像数据库。然后,我们针对每种水下图像形成类型分别训练多个 UWCNN 模型。此外,我们还进行了消融研究,以证明网络中每个组件的效果。直射光、前向散射光和后向散射光。

2024-09-18 21:35:00 646

原创 4、论文阅读:基于深度学习和成像模型的水下图像增强

现在的主要挑战是水下机器人捕获的图像颜色失真。水下图像的色调往往接近绿色和蓝色。另外,对比度低,细节模糊。本文提出了一种基于深度学习和成像模型的水下图像增强新算法,实验结果表明,该方法的优点是消除了水下环境因素的影响,丰富了色彩,增强了细节,帮助特征关键点点匹配获得更好的结果。由于各种环境因素的影响,水下图像的质量通常较低。一方面,整体色彩以绿色和蓝色为主;另一方面,对比度低,细节模糊。水下图像和雾化图像的物理成像模型有很多相似之处,光传输受到空气或水中颗粒散射的影响。

2024-09-18 12:17:31 1041

原创 3、论文阅读:EnYOLO:一种基于图像增强的水下目标区域自适应实时检测框架

UIE:水下图像增强UOD:水下目标检测AUVS:自主水下航行器水下图像增强在水下目标检测任务方面应用不多,具体有一下原因:(1)使用UIE作为预处理步骤,引入了很大的计算量(2)在目标检测之前进行图像增强未必能够产生性能改进(3)复杂的水下环境导致不同场景下的域偏移,严重影响UOD性能为了解决这些挑战,我们引入了EnYOLO,这是一种集成的实时框架,设计用于同时进行UIE和UOD,并具有域适应能力。具体地说,UIE和UOD任务头共享相同的网络主干,并利用轻量级设计。

2024-09-17 12:07:16 1340

原创 2、论文阅读:用于超高清交通监控的双域引导实时低光图像增强

弱光条件下拍摄的图像通常会出现能见度差和各种退化的情况,例如噪声干扰和模糊边缘特征。随着成像设备的发展,视觉监控数据的质量不断提高,如2K和4K,这对图像处理的效率有着更严格的要求。为了同时满足增强质量和计算速度的要求,提出了一种用于超高清交通监控的双域引导实时微光图像增强网络(DDNet)。具体地说,我们设计了一种编码器-解码器结构作为学习网络的主要结构。特别地,增强处理被分成两个子任务(即,该算法通过嵌入在编解码器结构中的粗增强模块(CEM)和基于LoG的梯度增强模块(GEM),实现了图像的。

2024-09-15 17:09:38 610

原创 1、直方图均衡化(Histogram Equalization, HE)

HE主要用来提升图像的对比度图像的直方图均衡化。

2024-09-15 11:45:31 161

原创 15-大模型训练DeepSpeed

[LLM]大模型训练DeepSpeed(一)-原理介绍

2024-09-08 18:55:52 105

原创 14-LLM Pruning and Distillation in Practice: The Minitron Approach

我们将llama3 8B和Mistral NeMo12B的大模型压缩到了4B和8B.我们探索了两种不同的修剪策略(1)深度修剪指的是从模型的深度维度进行剪枝,即减少模型的层数。这种方法通过去除不重要的层,减少模型的整体计算量和复杂度。(2)联合隐藏层/注意力/MLP(宽度)剪枝在这个策略中,模型的隐藏层、注意力头、以及MLP层的宽度(通道数或神经元数)被一起剪枝。这种方法通过减少这些组件的维度来压缩模型。我们发现,当没有访问原始数据时,对教师模型在蒸馏数据集上进行轻微的微调是有益的。

2024-09-08 14:28:34 959

原创 13、R-Adapter

pass,后续从github更新。

2024-09-08 12:50:13 126

原创 12、Transformers库介绍

Transformers库总体介绍

2024-09-05 09:33:07 421

原创 11、QLora

QLora是一种非常有效的微调办法,可以对具有大规模模型参数的模型进行微调。例如它可以用来微调一个具有 650 亿个参数的大型模型,更重要的是,QLORA 能让这个巨大的模型在单个 48GB 的 GPU 上完成微调,还能保持与 16 位全精度微调相同的性能。最好的模型被命名为Guanaco,可以在单个GPU上用很短的时间完成训练,同时表现非常好。

2024-09-04 20:34:17 1074

原创 12、linux上安装cuda和pytorch

用它文章中安装cpu版本的,其实可能安装的就是gpu版本,可以安装完后测试torch.cuda.is_available()注意在下面这个地方确保目录是一样的。

2024-09-04 16:20:39 294

原创 10、模型量化

模型量化详解

2024-09-04 09:41:27 119

原创 9、微调技术——Lora(论文阅读)

假设原本w为100x100大小,则A大小为100xK,B为Kx100,假设W中有用信息多,我们就可以让k大一点,否则就小一点。假设k=2,则AB中各有200个参数,一共400个,远远比W参数少得多。(1)对于改动的量,可能里面包含许多有限的有用值。比如100亿的参数,可能只有50亿有用,别的都是重复或者可根据已知来推导的。为了减少训练量,我们不会更新所有参数。假设预训练模型的参数矩阵为W,我们可以将其写成W=A*B的形式。(2)有时我们希望模型某一方面的能力更突出,所以只需要训练部分参数即可。

2024-09-02 18:28:13 297 1

原创 8-微调(本质、全量微调)

假如改动的量有100亿,则全量微调就是寻找这100亿改动的数字,很复杂。微调的本质就是寻找下面这个。

2024-09-02 17:49:46 155

原创 7-RNN、LSTM、GRU

史上最详细循环神经网络讲解(RNN/LSTM/GRU)GRU补充:人人都能看懂的GRU

2024-09-02 11:05:37 161

原创 6、Word2Vec

比如context是never、late,首先将他们表示成one-hot形式,在词向量矩阵中找到这两个词的向量,相加取平均,然后通过线性变化将词向量维度映射成我们需要预测的词表维度,使用softmax函数转化成概率输出即可。离target更近的词跟target相关性更大。所以采用非固定滑动窗口,这样距离target更近的context词有更大几率被采样。以前我们是将不是target的所有词作为负例,现在我们只使用一小部分作为负例。Skip-Gram是根据词预测context。主要是为了平衡常见词和罕见词。

2024-09-02 10:29:35 318

原创 5、transformer架构

Transformer中的自注意力机制被扩展为多个注意力头,每个头可以学习不同的注意权重,以更好地捕捉不同类型的关系。Nx = 6,Encoder block由6个encoder堆叠而成,图中的一个框代表的是一个encoder的内部结构,一个Encoder是由。这样的结构确保解码器在生成序列时,能够考虑到之前的输出,并避免未来信息的影响。例如,在处理文本序列时,模型不应该访问当前词语之后的词语,因此需要将这些词语的注意力权重设置为 0。在训练过程中,模型不应该访问未来信息,因为这会导致模型预测结果不准确。

2024-08-31 18:37:23 545

原创 4、大模型背后的范式

2、然后,我们可以通过具体的任务微调预训练模型来让他适应特定的任务。3、这样该模型就可以在一些新数据上有较好的表现。1、在预训练阶段,预训练模型获得大量的。

2024-08-31 16:22:50 172

原创 3、自然语言处理基础——词表示

通过将我们人类的单词转化成机器能理解的意思当计算机理解了词的意思后,希望计算机拥有以下两种能力:1、计算词之间的相似度2、推断词之间的联系。

2024-08-31 16:09:11 417

原创 2、微调VS提示工程

微调和提示工程都是让预训练语言模型适应特定任务的两种常见方法。

2024-08-31 11:05:56 306

原创 1、自回归语言模型&自编码语言模型

我们知道一般的语言模型都是从左到右计算某个词出现的概率,但是当我们做完型填空或者阅读理解这一类NLP任务的时候词的上下文信息都是需要考虑的,而这个时候只考虑了该词的上文信息而没有考虑到下文信息。所以,反向的语言模型出现了,就是从右到左计算某个词出现的概率,这一类语言模型称之为自回归语言模型。自回归语言模型是根据上文或者下文来预测后一个单词。我们都知道Bert在预训练阶段使用[mask]标记对句子中15%的单词进行随机屏蔽,然后根据被mask单词的上下文来预测该单词,这就是自编码语言模型的典型应用。

2024-08-31 09:52:01 144

原创 OUC深度学习培训

激活函数通过引入非线性,使神经网络能够拟合更复杂的函数,从而更好地逼近现实世界中的非线性关系。某些激活函数,如ReLU,可以避免梯度消失问题。3、ReLU 激活函数:AlexNet 使用 ReLU 激活函数,代替了传统的 sigmoid 函数,提高了训练速度和缓解了梯度消失问题。不同的激活函数具有不同的特性,例如ReLU的稀疏性,sigmoid的平滑性等。选择合适的激活函数可以增强模型的表达能力,提高模型的性能。更大的数据集: 更大的数据集能够提供更多样化的训练样本,使模型能够学习到更丰富的特征。

2024-08-30 00:17:04 722

原创 一、神经网络基础

由于标记样本昂贵,无标记样本廉价,因此使用半监督学习,通过标记样本和无标记样本的分布,根据聚类假设,来推断出新数据的类别。对已知输入X条件下输出Y的条件分布P(Y|X)建模,输入X直接输出最可能的Y。对数据分布进行假设,待求解的数据模式可以用一组有限且固定数目的参数进行刻画。对输入X和输出Y的联合分布P(X,Y)建模,然后用贝叶斯公式求P(Y|X)监督学习和无监督学习的混合,部分数据标记已知,部分数据标记未知。监督学习从数据中学习标记分界面,适用于预测数据标记。从数据中学习模式,适用于描述数据。

2024-08-30 00:10:32 266

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除