2、微调VS提示工程

微调VS提示工程


微调和提示工程都是让预训练语言模型适应特定任务的两种常见方法

微调

1、原理: 使用特定任务的数据集对预训练模型进行进一步训练,调整模型参数以适应新任务。
2、优点:
(1)更高的准确率: 通常能获得比提示工程更高的准确率,因为模型参数经过了更精细的调整。
(2)更灵活: 可以处理各种各样的任务,包括文本分类、问答、文本生成等。
3、缺点:
(1)需要更多数据: 需要大量的特定任务数据进行训练。
(2)训练时间更长: 训练过程耗时更长,需要更大的计算资源。
(3)容易过拟合: 如果训练数据不足或质量不高,容易导致模型过拟合,在测试集上表现不佳。
(4)模型存储空间更大: 微调后的模型通常比原始预训练模型更大。

提示工程

1、原理: 通过设计有效的提示词,引导预训练模型输出特定结果,无需进行模型参数更新。
2、优点:
(1)无需训练: 不需要额外的训练数据和训练过程,可以节省时间和资源。
(2)更轻量级: 不需要存储新的模型参数,只需要存储提示词,占用空间更小。
(3)更灵活: 可以通过调整提示词来适应不同的任务和需求。
3、缺点:
(1)准确率较低: 通常比微调的准确率低,因为模型参数没有进行调整。
(2)对提示词的质量要求高: 需要设计合适的提示词才能获得理想的结果。
(3)可解释性较差: 提示词的设计过程缺乏可解释性,难以理解为什么某些提示词会带来更好的结果。

### 关于提示工程微调的概念及应用 #### 提示工程技术概述 提示工程是指通过设计特定的输入模式来引导模型生成预期的结果。这种方法依赖于精心构建的文本模板,这些模板可以包含占位符或其他结构化元素,用于向预训练的语言模型提供上下文信息[^1]。 对于自然语言处理中的提示技术而言,其核心在于如何有效地利用少量标注数据以及未标记的数据资源,在不改变原有参数的情况下使模型适应新的任务需求。这不仅限于简单的关键词替换或句子补全,还包括更复杂的逻辑推理能力培养等方面的工作。 ```python def create_prompt(template, variables): """ 创建基于给定模板变量字典的具体提示字符串 参数: template (str): 包含{variable}形式占位符的字符串. variables (dict): 键对应template里的变量名, 值是要填入的内容. 返回: str: 完整填充后的提示语句. """ return template.format(**variables) # 使用实例 example_template = "The capital city of {country} is {capital}." filled_prompt = create_prompt(example_template, {"country": "France", "capital": "Paris"}) print(filled_prompt) ``` #### 微调过程解析 相比之下,微调则涉及到对已有大型预训练模型进行针对性调整的过程。当面对具体应用场景时,可以通过引入额外的小规模高质量样本集来进行再训练,从而使得通用型大模型能够更好地服务于特定领域内的任务执行。此过程中会更新部分甚至全部网络权重以优化性能表现。 值得注意的是,在实践中往往需要平衡好迁移学习带来的泛化优势同过拟合风险之间的关系;同时也要考虑计算成本等因素的影响。因此选择合适的策略至关重要——比如采用低秩因子分解或是仅解冻顶层几层等方式减少参数量级变化所带来的开销增加问题[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值