4、论文阅读:基于深度学习和成像模型的水下图像增强

前言

现在的主要挑战是水下机器人捕获的图像颜色失真。水下图像的色调往往接近绿色和蓝色。 另外,对比度低,细节模糊。本文提出了一种基于深度学习和成像模型的水下图像增强新算法,实验结果表明,该方法的优点是消除了水下环境因素的影响,丰富了色彩,增强了细节,帮助特征关键点点匹配获得更好的结果。

介绍

由于各种环境因素的影响,水下图像的质量通常较低。 一方面,整体色彩以绿色和蓝色为主; 另一方面,对比度低,细节模糊。

水下图像和雾化图像的物理成像模型有很多相似之处,光传输受到空气或水中颗粒散射的影响,导致进入相机的光线与物体本身反射的光线不同,从而降低捕获的图像质量。 研究人员将雾化图像的物理成像模型直接应用于水下图像,提出了多种水下图像色彩校正方法。然而,光在水中的传播与在大气中的传播不同,现有的成像模型没有考虑不同波长光的散射效果的差异。

通过大量的真实水下实验,对现有模型的衰减系数进行修改,提出了修正的水下成像模型。
大多数现有方法都是基于近似成像模型,**现有的基于深度学习的方法忽视了图像形成模型,**这导致模型结构复杂并使训练过程更加困难。其他一些基于深度学习的方法合并了图像形成模型,但对其进行了简化,这可能导致图像增强效果不显著。

本文通过结合最近提出的修正图像形成模型改进现有的基于深度学习的图像增强方法,提出了一种新的水下图像增强方法。 该方法由反向散射估计模块直接传输估计模块组成,两者都是使用卷积神经网络实现的。 这两个模块的输出与输入图像一起被输入重建模块以获得增强的水下图像。 在构建神经网络时,使用参数修正线性单元(PReLU)和扩张卷积来提高拟合能力。

物理成像模型

光学成像原理

在水下环境拍照时会收到很多因素的影响,比如光吸收、光折射和光散射。光穿过水会被吸收,并且对不同波长的光的吸收程度不同。
在这里插入图片描述
水下图像的光学成像模型由两部分光源信息组成

<think>好的,用户想查找关于深度学习水下图像增强方面的文献综述。首先,我需要回忆相关的引用内容。根据用户提供的引用,引用[1]提到了水下图像增强方法的研究综述,并包含了一个水下成像原理的示意图。引用[3]则讨论了在水下图像增强中使用Transformer模型的情况,指出这方面的论文还不算多,建议往这个方向靠。 接下来,我需要确定如何结合这些信息来回答用户的问题。用户明确提到了“深度学习 水下 图像增强 文献综述”,所以需要将深度学习文献综述结合起来。引用[1]是综述,但可能主要涵盖传统方法,而引用[3]提到深度学习的应用,特别是Transformer,但需要确认是否属于文献综述的一部分。 可能需要指出引用[1]作为基础综述,同时引用[3]提供深度学习的趋势,特别是Transformer的应用。此外,用户可能需要更多的资源或建议,比如推荐具体的数据库或搜索策略,但根据现有引用,只能基于提供的材料。 还要注意用户提到的文献综述是否包括最新深度学习进展。引用[3]提到2020年第一篇Transformer用于水下图像增强,说明这方面的研究较新,可能文献综述较少,但用户需要的就是这样的综述,所以需要建议查找近年来的综述论文,并参考引用[1]引用[3]中的方向。 另外,引用[3]还提到非物理模型物理模型的区别,这可能帮助用户缩小搜索范围,比如建议关注非物理模型深度学习的组合方法。同时,可能需要指出在哪些数据库或会议中查找,比如IEEE Xplore、Springer等,但用户没有提供这些引用,所以只能基于现有内容。 最后,生成相关问题需要考虑用户可能进一步的需求,比如方法比较、挑战、最新技术趋势等,确保问题具有引导性,帮助用户深入探索。</think>根据您的需求,推荐以下文献检索策略关键研究方向: 1. **核心文献定位** 引用[1]《水下图像增强方法研究综述》是基础性综述文献,包含水下成像物理模型分析(如光衰减、颜色失真机理)传统算法框架[^1]。建议优先阅读该文献的深度学习章节,并追踪其参考文献中标注"deep learning"的论文。 2. **新兴技术聚焦** 引用[3]指出Transformer模型是当前研究热点,2020年首次应用于水下场景的U型Transformer架构具有里程碑意义。可通过Web of Science设置检索式: $$ TS=("underwater image enhancement" AND ("deep learning" OR transformer)) $$ 时间范围设定2020-2024年,可快速定位最新进展[^3]。 3. **技术路线选择** - **高影响力论文**:优先考虑结合物理模型与神经网络的混合方法,如UIE-Net等架构 - **快速发表路径**:采用非物理模型的模块组合方法,例如将注意力机制与GAN网络结合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值