20. 有效的括号
public static bool IsValid(string s)
{
Dictionary<char, char> dict = new Dictionary<char, char>();
dict.Add(')', '(');
dict.Add(']', '[');
dict.Add('}', '{');
var result = true;
Stack<char> stack = new Stack<char>();
for (int i = 0; i < s.Length; i++)
{
if (s[i] == '(' || s[i] == '{' || s[i] == '[')//如果是左括号,直接入栈
{
stack.Push(s[i]);
continue;
}
if (stack.Count == 0 || stack.Pop() != dict[s[i]])//如果是右括号,弹出栈顶元素比较
{
result = false;
break;
}
}
return result && stack.Count == 0;//最后栈需要为空
}
1047. 删除字符串中的所有相邻重复项
题外话:
这道题目就像是我们玩过的游戏对对碰,如果相同的元素放在挨在一起就要消除。
递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
相信大家应该遇到过一种错误就是栈溢出,系统输出的异常是Segmentation fault(当然不是所有的Segmentation fault 都是栈溢出导致的) ,如果你使用了递归,就要想一想是不是无限递归了,那么系统调用栈就会溢出。
而且在企业项目开发中,尽量不要使用递归!
public static string RemoveDuplicates(string s)
{
Stack<char> stack = new Stack<char>();
for (int i = 0; i < s.Length; i++)
{
if (stack.Count == 0 || stack.Peek() != s[i])
{
stack.Push(s[i]);
continue;
}
if (stack.Count > 0 && stack.Peek() == s[i])
{
stack.Pop();
continue;
}
}
List<char> result = new List<char>();
while (stack.Count != 0)
{
result.Add(stack.Pop());
}
result.Reverse();
return new string(result.ToArray());
}
150. 逆波兰表达式求值
思路:
可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。这道题相对简单,有了这个保证,当操作符来时,栈里肯定保证至少有两个元素。
public static int EvalRPN(string[] tokens)
{
Stack<int> stack = new Stack<int>();
for (int i = 0; i < tokens.Length; i++)
{
if (int.TryParse(tokens[i], out int result))
{
stack.Push(result);
continue;
}
int right = stack.Pop();
int left = stack.Pop();
switch (tokens[i])
{
case "+":
stack.Push(left + right);
break;
case "-":
stack.Push(left - right);
break;
case "*":
stack.Push(left * right);
break;
case "/":
stack.Push(left / right);
break;
}
}
return stack.Peek();
}