Tarjan算法(模板)

算法思想: 首先要明确强连通图的概念,一个有向图中,任意两个点互相可以到达;什么是强连通分量?有向图的极大连通子图叫强连通分量。
给一个有向图,我们用Tarjan算法把这个图的子图(在这个子图内,任意两个点可以相互到达,极大的子图)缩成一个点,相当于化简;
怎样去做:从一个点开始遍历它能走到的下一个点(dfn记录时间戳,low记录能回到的最早的时间戳),每遍历到一个点,判断这个点如果没有走过(dfn值为零),继续深搜,如果走过了并且在栈里面说明可以形成一个环(那就可以缩成一个点,更新当前点low的值,回到更早的时间戳),搜完它可以到达所有的点以后回溯,更新low;直到回到 low[u]==dfn[u](环的“根节点"),出栈这个点上面的所有的点(包括这个点本身,他们可以缩成一个点).继续回溯.
特别注意:

        else if(instack[v])/*走过并且形成一个环??????*/
            low[u]=min(low[u],dfn[v]);/*更新最小值low,合并集合*/
            /*不能写成low[u]=min(low[v],low[u])*/

当计算有多少个强连通分量的时候,写成那个没关系,但是如果是求割点,两个语句求出来的low值不一样,值会偏小,割点判断错误(因为判断条件是if(low[v]>=dfn[u]))。
扩展:
计算出入度,问加多少条边可以变成一个整个连通分量:
在这里首先缩点,用一个color[ ]数组,将同一集合的点标记成某个序号(出栈的时候就是同一集合),最后遍历输入的边,用两个数组标记每一个集合的出度入度情况,得出入度和出度分别有几个集合为零,输出最大值。注意:调用tarjan函数的时候,用for循环,因为图可能不连通!还有当它本来就是一个连通分量的时候,特判一下。
例题:POJ 1236
Network of Schools

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
#define N 1010
vector<int>edge[N];
vector<int>belong[N];
stack<int>s;
int low[N];/*所属的强连通数组*/
int dfn[N];/*访问的顺序*/
bool instack[N];/*是否在栈内*/
int n,m,u,v,cnt,cntb;/*n个顶点,m条边*/
void Tarjan(int u)/*当前处于的节点*/
{
    ++cnt;/*计算访问到第几个点(时间戳)*/
    dfn[u]=low[u]=cnt;/*访问的顺序(时间戳),low数组记录这个点所能回到的最早的时间戳*/
    s.push(u);
    instack[u]=true;
    for(int i=0;i<edge[u].size();i++)/*下一个要走的节点*/
    {
        int v=edge[u][i];
        if(!dfn[v])/*如果没走过*/
        {
            Tarjan(v);/*深搜*/
            low[u]=min(low[u],low[v]);/*更新最小值low,合并集合*/
        }
        else if(instack[v])/*走过并且形成一个环??????*/
            low[u]=min(low[u],dfn[v]);/*更新最小值low,合并集合*/
    }
    if(dfn[u]==low[u])/*回到环的起点,出栈*/
    {
        ++cntb;
        int node;
        do
        {
            node=s.top();
            s.pop();
            instack[node]=false;
            belong[cntb].push_back(node);/*将集合分组*/
        }while(node!=u);
    }
}
int main()
{
    memset(instack,0,sizeof(instack));
    cnt=0;cntb=0;
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++)
    {
        scanf("%d%d",&u,&v);
        edge[u].push_back(v);
    }
    Tarjan(1);/*从一号顶点开始遍历*/
    for(int i=1;i<=n;i++)
        printf("dfn:%d low:%d\n",dfn[i],low[i]);
    for(int i=1;i<=cntb;i++)
    {
        printf("第%d组\n",i);
        for(int j=0;j<belong[i].size();j++)
            printf("%d ",belong[i][j]);
        printf("\n");
    }
    return 0;
}
/*
7 11
1 2
2 3
2 5
2 4
3 5
3 7
7 5
5 6
6 7
4 1
4 5
*/

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Tarjan算法和Kosaraju算法都是求解有向图强连通分量的算法,它们的时间复杂度都为O(N+M),其中N为图中节点数,M为图中边数。 Tarjan算法的基本思想是通过DFS遍历图中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原图进行一次DFS,得到一个反向图,然后再对反向图进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建图和反向图 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值