算法思想: 首先要明确强连通图的概念,一个有向图中,任意两个点互相可以到达;什么是强连通分量?有向图的极大连通子图叫强连通分量。
给一个有向图,我们用Tarjan算法把这个图的子图(在这个子图内,任意两个点可以相互到达,极大的子图)缩成一个点,相当于化简;
怎样去做:从一个点开始遍历它能走到的下一个点(dfn记录时间戳,low记录能回到的最早的时间戳),每遍历到一个点,判断这个点如果没有走过(dfn值为零),继续深搜,如果走过了并且在栈里面说明可以形成一个环(那就可以缩成一个点,更新当前点low的值,回到更早的时间戳),搜完它可以到达所有的点以后回溯,更新low;直到回到 low[u]==dfn[u](环的“根节点"),出栈这个点上面的所有的点(包括这个点本身,他们可以缩成一个点).继续回溯.
特别注意:
else if(instack[v])/*走过并且形成一个环??????*/
low[u]=min(low[u],dfn[v]);/*更新最小值low,合并集合*/
/*不能写成low[u]=min(low[v],low[u])*/
当计算有多少个强连通分量的时候,写成那个没关系,但是如果是求割点,两个语句求出来的low值不一样,值会偏小,割点判断错误(因为判断条件是if(low[v]>=dfn[u]))。
扩展:
计算出入度,问加多少条边可以变成一个整个连通分量:
在这里首先缩点,用一个color[ ]数组,将同一集合的点标记成某个序号(出栈的时候就是同一集合),最后遍历输入的边,用两个数组标记每一个集合的出度入度情况,得出入度和出度分别有几个集合为零,输出最大值。注意:调用tarjan函数的时候,用for循环,因为图可能不连通!还有当它本来就是一个连通分量的时候,特判一下。
例题:POJ 1236
Network of Schools
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
#define N 1010
vector<int>edge[N];
vector<int>belong[N];
stack<int>s;
int low[N];/*所属的强连通数组*/
int dfn[N];/*访问的顺序*/
bool instack[N];/*是否在栈内*/
int n,m,u,v,cnt,cntb;/*n个顶点,m条边*/
void Tarjan(int u)/*当前处于的节点*/
{
++cnt;/*计算访问到第几个点(时间戳)*/
dfn[u]=low[u]=cnt;/*访问的顺序(时间戳),low数组记录这个点所能回到的最早的时间戳*/
s.push(u);
instack[u]=true;
for(int i=0;i<edge[u].size();i++)/*下一个要走的节点*/
{
int v=edge[u][i];
if(!dfn[v])/*如果没走过*/
{
Tarjan(v);/*深搜*/
low[u]=min(low[u],low[v]);/*更新最小值low,合并集合*/
}
else if(instack[v])/*走过并且形成一个环??????*/
low[u]=min(low[u],dfn[v]);/*更新最小值low,合并集合*/
}
if(dfn[u]==low[u])/*回到环的起点,出栈*/
{
++cntb;
int node;
do
{
node=s.top();
s.pop();
instack[node]=false;
belong[cntb].push_back(node);/*将集合分组*/
}while(node!=u);
}
}
int main()
{
memset(instack,0,sizeof(instack));
cnt=0;cntb=0;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
edge[u].push_back(v);
}
Tarjan(1);/*从一号顶点开始遍历*/
for(int i=1;i<=n;i++)
printf("dfn:%d low:%d\n",dfn[i],low[i]);
for(int i=1;i<=cntb;i++)
{
printf("第%d组\n",i);
for(int j=0;j<belong[i].size();j++)
printf("%d ",belong[i][j]);
printf("\n");
}
return 0;
}
/*
7 11
1 2
2 3
2 5
2 4
3 5
3 7
7 5
5 6
6 7
4 1
4 5
*/