Tarjan算法,用于解决强连通问题,所谓强连通,就是在这个分量重任意一个点都可以通过其他点到达所有的点,注意不是两两都直接连接(两两连接是极大团),Tarjan算法并不是什么高深的算法,理解起来也相对容易,用起来也比较方便,模板也比较好套,有关Tarjan算法的讲解小编觉得百度百科已经讲的非常详细了。原理就是用到两个数组DFN,Low,分别表示的是搜索到的时间度(也就是说第几个搜索到它),和它能追溯到的最小的时间度(也就是说它能连通的点的最小的时间度),每次将搜索到的点进行入栈处理,当某点DFN和Low值相等的时候说明此点到栈顶的所有点构成了一个强连通图。小编这里就以HDOJ上的迷宫城堡那题作为媒介,传递出小编的Tarjan算法模板。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 10000+10;
int DFN[maxn],Low[maxn],num,index;
bool instack[maxn];
vector<int> G[maxn];
stack<int> S;
int in[maxn],belong[maxn];
void Tarjan(int u)
{
int v;
DFN[u] = Low[u] = index++;
instack[u] = true;
S.push(u);
for(int i=0; i<G[u].size(); i++)
{
v = G[u][i];
if(!DFN[v])
{
Tarjan(v);
Low[u] = min(Low[u], Low[v]);
}
else if(instack[v])
Low[u] = min(Low[u], DFN[v]);
}
if(DFN[u] == Low[u])
{
num++;
do
{
v = S.top();
S.pop();
belong[v] = num;
}while(v != u);
}
}
void SCC(int n)
{
for(int i=1; i<=n; i++)
if(!DFN[i])
Tarjan(i);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m) && (n||m))
{
int a,b;
memset(DFN,0,sizeof(DFN));
memset(Low,0,sizeof(Low));
index = num = 0;
for(int i=0; i<=n; i++)
G[i].clear();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
SCC(n);
if(num == 1) printf("Yes\n");
else printf("No\n");
}
return 0;
}