ACM_模板_Tarjan算法

Tarjan算法,用于解决强连通问题,所谓强连通,就是在这个分量重任意一个点都可以通过其他点到达所有的点,注意不是两两都直接连接(两两连接是极大团),Tarjan算法并不是什么高深的算法,理解起来也相对容易,用起来也比较方便,模板也比较好套,有关Tarjan算法的讲解小编觉得百度百科已经讲的非常详细了。原理就是用到两个数组DFN,Low,分别表示的是搜索到的时间度(也就是说第几个搜索到它),和它能追溯到的最小的时间度(也就是说它能连通的点的最小的时间度),每次将搜索到的点进行入栈处理,当某点DFN和Low值相等的时候说明此点到栈顶的所有点构成了一个强连通图。小编这里就以HDOJ上的迷宫城堡那题作为媒介,传递出小编的Tarjan算法模板。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 10000+10;
int DFN[maxn],Low[maxn],num,index;
bool instack[maxn];
vector<int> G[maxn];
stack<int> S;
int in[maxn],belong[maxn];
void Tarjan(int u)
{
	int v;
	DFN[u] = Low[u] = index++;
	instack[u] = true;
	S.push(u);
	for(int i=0; i<G[u].size(); i++)
	{
		v = G[u][i];
		if(!DFN[v])
		{
			Tarjan(v);
			Low[u] = min(Low[u], Low[v]);
		}
		else if(instack[v])
			Low[u] = min(Low[u], DFN[v]);
	}
	if(DFN[u] == Low[u])
	{
		num++;
		do
		{
			v = S.top();
			S.pop();
			belong[v] = num;
		}while(v != u);
	}
}
void SCC(int n)
{
	for(int i=1; i<=n; i++)
		if(!DFN[i])
			Tarjan(i);
}
int main()
{
	int n,m;
	while(scanf("%d%d",&n,&m) && (n||m))
	{
		int a,b;
		memset(DFN,0,sizeof(DFN));
		memset(Low,0,sizeof(Low));
		index = num = 0;
		for(int i=0; i<=n; i++)
			G[i].clear();
		while(m--)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			G[a].push_back(b);
		}
		SCC(n);
		if(num == 1) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值