题意:给出m条边 , n个顶点,u [ i ]到v [ i ] 的距离w [ i ],求除了最短路的那条最短的边的长度.
思路:之前有做过相似的题,使用迪杰斯特拉算法求单源最短路径,并且记录路径,枚举每段路径不存在的时候的最短路径,求最小值。不过这道题数据太大,邻接矩阵存不下,听说用单源最短路径会超时,所以用邻接表存,用SPFA算法求1号点到其他所有点的最短路径,再用一次SPFA求出n号点到所有顶点的距离,最后枚举每一条边,求大于最短路径的最小值(可能表述不清,代码最后一个for循环,容易理解,相当于假设那条路是次短路径的必经之路)
注意:第一次用这些新知识,比较生疏,比如,路径双向储存,book数组标记
放进队列的顶点的条件? 如果对顶点松弛成功,说明通过下个顶点可以继续松弛,如可能会优化,如果没有进队列则放进队列,如果松弛不成功,说明通过这个顶点已经找不到可以松驰的点。
看代码吧:
#include<queue>
#include<string.h>
#include<stdio.h>
using namespace std;
int dis1[5100],dis2[5100],first[11010],next[100100*2],u[100100*2],v[100100*2],w[100100*2];
int k=1;int n,m;
void add(int a,int b,int c)//邻接表储存图
{
u[k]=a;
v[k]=b;
w[k]=c;
next[k]=first[a];
first[a]=k++;
}
void spfa(int x,int dis[])
{
for(int i=0;i<5010;i++)
dis[i]=0x3f3f3f3f;
dis[x]=0;
int book[5100]={0},k;
book[x]=1;
queue<int>q;
q.push(x);//将点放进队列
int d;
while(!q.empty())
{
d=q.front();
q.pop();
k=first[d];//点周围的边
while(k!=-1)//book数组标记防止此循环顶点重复进入队列
{
if(dis[v[k]]>dis[u[k]]+w[k])
{
dis[v[k]]=dis[u[k]]+w[k];
if(book[v[k]]==0)
{
book[v[k]]=1;
q.push(v[k]);
}
}
k=next[k];
}
book[d]=0;//还原
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int t1,t2,t3;
for(int i=0;i<10010;i++)
first[i]=-1;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&t1,&t2,&t3);
add(t1,t2,t3);
add(t2,t1,t3);//双向路径
}
spfa(1,dis1);
spfa(n,dis2);
int mx=0x3f3f3f3f;
for(int i=1;i<=2*m;i++)
{
int x=dis1[u[i]]+dis2[v[i]]+w[i];//奇妙的次短路径
if(x>dis1[n]&&x<mx)
mx=x;
}
printf("%d\n",mx);
}
return 0;
}