题目链接:https://ac.nowcoder.com/acm/contest/7031/F
题意:求图当中从0号节点到n-1号节点的次短路。
思路:在spfa算法上稍改进即可,更新次短路的情况分三种。1、当最短路更新时将次短路的值更新为当前最短路的值(这样保证次短路永远都是大于最短路且是第二小的)。2、次短路正常更新。3、当最短路不更新时,若到u的最短路经过该边到v的距离小于次短路则更新次短路。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5050;
int n,m,vis[maxn],dist[maxn],dist2[maxn]; //dist记录最短路,dist2记录次短路
vector<pair<int,int> > e[maxn]; //邻接表建图
void spfa(int x){
dist[x]=0;vis[x]=1;
queue<int> q;q.push(x);
while(!q.empty()){
int u=q.front();q.pop();vis[u]=0;
for(int i=0;i<e[u].size();i++){
int v=e[u][i].first,step=e[u][i].second;
if(dist[v]>dist[u]+step){ //更新最短路前,将次短路变成当前的最短路
dist2[v]=dist[v];
dist[v]=dist[u]+step;
if(!vis[v]) q.push(v),vis[v]=1;
}
if(dist2[v]>dist2[u]+step){ //更新次短路
dist2[v]=dist2[u]+step;
if(!vis[v]) q.push(v),vis[v]=1;
}
if(dist2[v]>dist[u]+step&&dist[v]<dist[u]+step){ //最短路不更新时,若到u的最短路经过该边到v的距离小于次短路则更新次短路
dist2[v]=dist[u]+step;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++) dist[i]=dist2[i]=1e9;
for(int i=0;i<m;i++){
int x,y,z;cin>>x>>y>>z;
e[x].push_back(make_pair(y,z));
e[y].push_back(make_pair(x,z));
}
spfa(0);
cout<<dist2[n-1];
return 0;
}