java8新特性-stream学习

本文详细介绍了Java8中的Stream API,包括如何创建流、常用的流操作如过滤、映射、排序、查找与匹配、归约和收集。通过实例展示了如何简化集合数据操作,提升代码效率。同时,讲解了并行流的概念及其在数据处理中的优势。
摘要由CSDN通过智能技术生成

java8除了提供了Lambda表达式,操作集合的Stream API也是新特性中最值得学习和掌握的,它大大简化了,我们操作数据集合的代码量的书写。简单来说Stream是一个抽象概念,可以通过查找,过滤,映射等操作,这一点与Scala中集合操作很类似。

Stream是什么

通俗的说就是操作数据集合的一种手段,你可以使用它,以获取所需要的集合数据源类型,如下图所示:
通常Stream流操作整个流程是创建流对象->对流操作->获得目标数据源操作

img

创建Stream

  • 通过Collection接口提供的Stream

    • 返回一个顺序流

      default Stream<E> stream() {
         return StreamSupport.stream(spliterator(), false);
       } 
      
    • 返回一个并行流

      default Stream<E> parallelStream() {
        return StreamSupport.stream(spliterator(), true);
      }
      
    • 两种流的使用

      package com.codegeek.lambda;
      import lombok.*;
      
      @Setter
      @Getter
      @NoArgsConstructor
      @ToString
      public class Employee {
          /**
           * 员工姓名
           */
          private String name;
          /**
           * 员工年龄
           */
          private int age;
          /**
           * 基本薪水
           */
          private double basicSalary;
      
          /**
           * 订单成交总额
           */
          private double dealTotalPrice;
      
          public Employee(String name, int age, double basicSalary,double dealTotalPrice) {
              this.name = name;
              this.age = age;
              this.basicSalary = basicSalary;
              this.dealTotalPrice = dealTotalPrice;
          }
      
          /**
           * 员工总薪资=基本薪资+提成薪资
           *
           * @return Double
           */
          public Double getTotalSalary() {
              return this.basicSalary + this.dealTotalPrice * 0.04;
          }
      }
      

      测试方法:

       @Test
       public void test() {
      	Employee qingLong = new Employee("青龙", 25, 5500, 7500);
      	Employee baiHu = new Employee("白虎", 27, 5000, 9000);
      	Employee zhuQue = new Employee("朱雀", 22, 3800, 4500);
      	Employee xuanWu = new Employee("玄武", 24, 3300, 3300);
      	List<Employee> employees = Arrays.asList(qingLong, baiHu, zhuQue, xuanWu);
      	// 得到一个顺序流,并获取工资大与4000的员工的姓名
      	Stream<Employee> stream = employees.stream();
          stream.filter(e-> e.getTotalSalary()>4000).map(Employee::getName).forEach(System.out::println); 
          // 得到一个并行流,获取年龄大于25的员工姓名
          Stream<Employee> employeeStream = employees.parallelStream();
          employeeStream.filter(employee -> employee.getAge()> 25).map(Employee::getName).forEach(System.out::println ); 
      }
      
  • 通过Arrays创建Stream流

注意数组里面是什么类型的数组,就会产生同类型的流。

// 例子
// 初始化一个数组对象
 int[] arr = {11, 55, 44, 20, 45, 16};
// 通过Arrays创建流对象是IntStream
 Arrays.stream(arr).sorted().forEach(System.out::println);

Stream常见的操作

过滤和切片

方法方法介绍
filter(Predicate<? super T> predicate)接收断言接口,并从流中排除元素
distinct()去除流中重复的元素
limit(long maxSize)截取流中元素个数,类似sql查询limit
skip(long n)跳过元素,跳过前n个元素
@Test
public void testFilter() {
  int[] age = {11, 22, 44, 22, 24, 24, 66, 77, 77, 25, 34};
   // 使用filter过滤获得大于33的数组元素
  Arrays.stream(age).filter(i -> i > 33).forEach(System.out::println);
  // 去重
  Arrays.stream(age).distinct().forEach(System.out::println);
  // 截取3个元素
  Arrays.stream(age).limit(3).forEach(System.out::println);
  // 跳过前3个元素
  Arrays.stream(age).skip(3).forEach(System.out::println);  
}

映射

方法方法介绍
map(Function mapper)接收一个函数式接口,将会映射到流中的每一个元素
mapToDouble(ToDoubleFunction mapper)接收函数式接口,将映射产生DoubleStream
mapToLong(ToLongFunction mapper)接收函数式接口,将映射产生LongStream
mapToInt(ToIntFunction mapper)接收函数式接口,将映射产生IntStream
flatMap(Function extends Stream mapper)接收函数,将流中的每个值都转换一个流,然后将这些流汇成一个流
String[] arr = {"java", "scala", "php", "python", "c++"};
// 将流中的每一个元素转换成大写
Arrays.stream(arr).map(String::toUpperCase).forEach(System.out::println);
//将流中的数据转Double类型
long[] array = {1, 4, 6, 7, 12};
// 返回Double类型的Stream
Arrays.stream(array).mapToDouble(e-> e* 100).forEach(System.out::println);
// 返回Long类型的Stream
Arrays.stream(array).mapToLong(e -> e + 23).forEach(System.out::println);
// flatMap演示
List<List<String>> database = new ArrayList<>();
List<String> noSql = Arrays.asList("redis", "hbase", "membercache");
List<String> sql = Arrays.asList("mysql", "oracle", "db2");
database.add(noSql);
database.add(sql);
List<String> h = database.stream().flatMap(s -> s.stream().filter(si -> si.contains("h"))).collect(Collectors.toList());
h.stream().forEach(System.out::println);

排序

Employee qingLong = new Employee("青龙", 25, 5500, 7500);
Employee baiHu = new Employee("白虎", 27, 5000, 9000);
Employee zhuQue = new Employee("朱雀", 22, 3800, 4500);
Employee xuanWu = new Employee("玄武", 24, 3300, 3300);
List<Employee> employees = Arrays.asList(qingLong, baiHu, zhuQue, xuanWu);
// 按照薪水的大小进行排序
employees.stream().sorted(Comparator.comparing(Employee::getTotalSalary)).forEach(System.out::println);

查找与匹配

方法方法介绍
allMatch(Predicate p)检查流中的元素是否都匹配
anyMatch(Predicate p)检查是否匹配一个元素
noneMatch(Predicate p)检查是否没有匹配所有元素
findFirst()返回第一个元素
findAny()返回流中任意元素
count返回流中的个数
max(Comparator c)返回流中最大值
min(Comparator c)返回流中最小值
// 判断所有的员工年龄是否大于18
boolean b = employees.stream().allMatch(e -> e.getAge() > 18);
System.out.println("allMatch="+b);// 结果为true
// 判断所有员工中有没有年龄大于35的
boolean b1 = employees.stream().anyMatch(e -> e.getAge() > 35);
System.out.println("anyMath=" + b1); // 结果为false
// 判断所有员工中没有年龄大于35的
boolean b1 = employees.stream().noneMatch(e -> e.getAge() > 35);
System.out.println("anyMath=" + b1); // 结果为true
// 返回第一个员工的信息
Optional<Employee> first = employees.stream().findFirst();
System.out.println(first.get());
// 统计年龄大于20的员工个数
ong count = employees.stream().filter(e -> e.getAge() > 20).count();
System.out.println("count="+count);
// 统计集合中员工薪资最高的员工信息
Optional<Employee> max = employees.stream().max(Comparator.comparing(Employee::getTotalSalary));
System.out.println("max=" + max);

归约

方法方法介绍
reduce(BinaryOperator p)将流中的元素反复结合起来得到一个值返回Optional
reduce(T iden,BinaryOperator p)将流中的元素反复结合起来得到一个值T
Optional<Double> reduce = employees.stream().map(Employee::getTotalSalary).reduce(Double::sum);
double v = reduce.get();
System.out.println("reduce="+v);
int[] array = {1, 4, 6, 7, 12};
System.out.println("====");
// 这里第一次将0作为x的值然后数组中1作为y,然后计算后的结果是1,第二次将1作为x的值,然后数组中的4作为y值进行相加,后面以此类推,直到将所有的值都进行相加
int reduce = Arrays.stream(array).reduce(0, (x, y) -> x + y);
System.out.println("reduce=" + reduce);

收集

方法方法介绍
collect(Collector c)将流转换为其他形式,接收Collector接口实现。

    @Test
    public void test() {
        // 收集获取总数(集合总数)
        Long collect = employees.stream().collect(Collectors.counting());
        System.out.println(collect);

        // 工资的平均值
        Double collect1 = employees.stream().collect(Collectors.averagingDouble(Employee::getTotalSalary));
        System.out.println(collect1);

        // 获取工资的总数,综合,最小值,平均值,最大值
        DoubleSummaryStatistics collect2 = employees.stream().collect(Collectors.summarizingDouble(Employee::getTotalSalary));
        System.out.println(collect2);

        // 获取年龄最大的员工
        Optional<Employee> collect3 = employees.stream().collect(Collectors.maxBy((e1, e2) -> Integer.compare(e1.getAge(), e2.getAge())));
        System.out.println(collect3.get());

        // 获取年龄最小的员工
        Optional<Double> collect4 = employees.stream().map(Employee::getTotalSalary).collect(Collectors.minBy(Double::compare));
        System.out.println(collect4.get());

        // 按薪资分组
        Map<Double, List<Employee>> collect5 = employees.stream().collect(Collectors.groupingBy(Employee::getTotalSalary));
        System.out.println(collect5);

        // 薪资分区(匹配true)
        Map<Boolean, List<Employee>> collect6 = employees.stream().collect(Collectors.partitioningBy((e) -> e.getTotalSalary() > 5000d));
        System.out.println(collect6);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值