java8除了提供了Lambda表达式,操作集合的Stream API也是新特性中最值得学习和掌握的,它大大简化了,我们操作数据集合的代码量的书写。简单来说Stream是一个抽象概念,可以通过查找,过滤,映射等操作,这一点与Scala中集合操作很类似。
Stream是什么
通俗的说就是操作数据集合的一种手段,你可以使用它,以获取所需要的集合数据源类型,如下图所示:
通常Stream流操作整个流程是创建流对象
->对流操作
->获得目标数据源操作
创建Stream
-
通过Collection接口提供的Stream
-
返回一个顺序流
default Stream<E> stream() { return StreamSupport.stream(spliterator(), false); }
-
返回一个并行流
default Stream<E> parallelStream() { return StreamSupport.stream(spliterator(), true); }
-
两种流的使用
package com.codegeek.lambda; import lombok.*; @Setter @Getter @NoArgsConstructor @ToString public class Employee { /** * 员工姓名 */ private String name; /** * 员工年龄 */ private int age; /** * 基本薪水 */ private double basicSalary; /** * 订单成交总额 */ private double dealTotalPrice; public Employee(String name, int age, double basicSalary,double dealTotalPrice) { this.name = name; this.age = age; this.basicSalary = basicSalary; this.dealTotalPrice = dealTotalPrice; } /** * 员工总薪资=基本薪资+提成薪资 * * @return Double */ public Double getTotalSalary() { return this.basicSalary + this.dealTotalPrice * 0.04; } }
测试方法:
@Test public void test() { Employee qingLong = new Employee("青龙", 25, 5500, 7500); Employee baiHu = new Employee("白虎", 27, 5000, 9000); Employee zhuQue = new Employee("朱雀", 22, 3800, 4500); Employee xuanWu = new Employee("玄武", 24, 3300, 3300); List<Employee> employees = Arrays.asList(qingLong, baiHu, zhuQue, xuanWu); // 得到一个顺序流,并获取工资大与4000的员工的姓名 Stream<Employee> stream = employees.stream(); stream.filter(e-> e.getTotalSalary()>4000).map(Employee::getName).forEach(System.out::println); // 得到一个并行流,获取年龄大于25的员工姓名 Stream<Employee> employeeStream = employees.parallelStream(); employeeStream.filter(employee -> employee.getAge()> 25).map(Employee::getName).forEach(System.out::println ); }
-
-
通过Arrays创建Stream流
注意数组里面是什么类型的数组,就会产生同类型的流。
// 例子
// 初始化一个数组对象
int[] arr = {11, 55, 44, 20, 45, 16};
// 通过Arrays创建流对象是IntStream
Arrays.stream(arr).sorted().forEach(System.out::println);
Stream常见的操作
过滤和切片
方法 | 方法介绍 |
---|---|
filter(Predicate<? super T> predicate) | 接收断言接口,并从流中排除元素 |
distinct() | 去除流中重复的元素 |
limit(long maxSize) | 截取流中元素个数,类似sql查询limit |
skip(long n) | 跳过元素,跳过前n个元素 |
@Test
public void testFilter() {
int[] age = {11, 22, 44, 22, 24, 24, 66, 77, 77, 25, 34};
// 使用filter过滤获得大于33的数组元素
Arrays.stream(age).filter(i -> i > 33).forEach(System.out::println);
// 去重
Arrays.stream(age).distinct().forEach(System.out::println);
// 截取3个元素
Arrays.stream(age).limit(3).forEach(System.out::println);
// 跳过前3个元素
Arrays.stream(age).skip(3).forEach(System.out::println);
}
映射
方法 | 方法介绍 |
---|---|
map(Function mapper) | 接收一个函数式接口,将会映射到流中的每一个元素 |
mapToDouble(ToDoubleFunction mapper) | 接收函数式接口,将映射产生DoubleStream |
mapToLong(ToLongFunction mapper) | 接收函数式接口,将映射产生LongStream |
mapToInt(ToIntFunction mapper) | 接收函数式接口,将映射产生IntStream |
flatMap(Function extends Stream mapper) | 接收函数,将流中的每个值都转换一个流,然后将这些流汇成一个流 |
String[] arr = {"java", "scala", "php", "python", "c++"};
// 将流中的每一个元素转换成大写
Arrays.stream(arr).map(String::toUpperCase).forEach(System.out::println);
//将流中的数据转Double类型
long[] array = {1, 4, 6, 7, 12};
// 返回Double类型的Stream
Arrays.stream(array).mapToDouble(e-> e* 100).forEach(System.out::println);
// 返回Long类型的Stream
Arrays.stream(array).mapToLong(e -> e + 23).forEach(System.out::println);
// flatMap演示
List<List<String>> database = new ArrayList<>();
List<String> noSql = Arrays.asList("redis", "hbase", "membercache");
List<String> sql = Arrays.asList("mysql", "oracle", "db2");
database.add(noSql);
database.add(sql);
List<String> h = database.stream().flatMap(s -> s.stream().filter(si -> si.contains("h"))).collect(Collectors.toList());
h.stream().forEach(System.out::println);
排序
Employee qingLong = new Employee("青龙", 25, 5500, 7500);
Employee baiHu = new Employee("白虎", 27, 5000, 9000);
Employee zhuQue = new Employee("朱雀", 22, 3800, 4500);
Employee xuanWu = new Employee("玄武", 24, 3300, 3300);
List<Employee> employees = Arrays.asList(qingLong, baiHu, zhuQue, xuanWu);
// 按照薪水的大小进行排序
employees.stream().sorted(Comparator.comparing(Employee::getTotalSalary)).forEach(System.out::println);
查找与匹配
方法 | 方法介绍 |
---|---|
allMatch(Predicate p) | 检查流中的元素是否都匹配 |
anyMatch(Predicate p) | 检查是否匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回流中任意元素 |
count | 返回流中的个数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
// 判断所有的员工年龄是否大于18
boolean b = employees.stream().allMatch(e -> e.getAge() > 18);
System.out.println("allMatch="+b);// 结果为true
// 判断所有员工中有没有年龄大于35的
boolean b1 = employees.stream().anyMatch(e -> e.getAge() > 35);
System.out.println("anyMath=" + b1); // 结果为false
// 判断所有员工中没有年龄大于35的
boolean b1 = employees.stream().noneMatch(e -> e.getAge() > 35);
System.out.println("anyMath=" + b1); // 结果为true
// 返回第一个员工的信息
Optional<Employee> first = employees.stream().findFirst();
System.out.println(first.get());
// 统计年龄大于20的员工个数
ong count = employees.stream().filter(e -> e.getAge() > 20).count();
System.out.println("count="+count);
// 统计集合中员工薪资最高的员工信息
Optional<Employee> max = employees.stream().max(Comparator.comparing(Employee::getTotalSalary));
System.out.println("max=" + max);
归约
方法 | 方法介绍 |
---|---|
reduce(BinaryOperator p) | 将流中的元素反复结合起来得到一个值返回Optional |
reduce(T iden,BinaryOperator p) | 将流中的元素反复结合起来得到一个值T |
Optional<Double> reduce = employees.stream().map(Employee::getTotalSalary).reduce(Double::sum);
double v = reduce.get();
System.out.println("reduce="+v);
int[] array = {1, 4, 6, 7, 12};
System.out.println("====");
// 这里第一次将0作为x的值然后数组中1作为y,然后计算后的结果是1,第二次将1作为x的值,然后数组中的4作为y值进行相加,后面以此类推,直到将所有的值都进行相加
int reduce = Arrays.stream(array).reduce(0, (x, y) -> x + y);
System.out.println("reduce=" + reduce);
收集
方法 | 方法介绍 |
---|---|
collect(Collector c) | 将流转换为其他形式,接收Collector接口实现。 |
@Test
public void test() {
// 收集获取总数(集合总数)
Long collect = employees.stream().collect(Collectors.counting());
System.out.println(collect);
// 工资的平均值
Double collect1 = employees.stream().collect(Collectors.averagingDouble(Employee::getTotalSalary));
System.out.println(collect1);
// 获取工资的总数,综合,最小值,平均值,最大值
DoubleSummaryStatistics collect2 = employees.stream().collect(Collectors.summarizingDouble(Employee::getTotalSalary));
System.out.println(collect2);
// 获取年龄最大的员工
Optional<Employee> collect3 = employees.stream().collect(Collectors.maxBy((e1, e2) -> Integer.compare(e1.getAge(), e2.getAge())));
System.out.println(collect3.get());
// 获取年龄最小的员工
Optional<Double> collect4 = employees.stream().map(Employee::getTotalSalary).collect(Collectors.minBy(Double::compare));
System.out.println(collect4.get());
// 按薪资分组
Map<Double, List<Employee>> collect5 = employees.stream().collect(Collectors.groupingBy(Employee::getTotalSalary));
System.out.println(collect5);
// 薪资分区(匹配true)
Map<Boolean, List<Employee>> collect6 = employees.stream().collect(Collectors.partitioningBy((e) -> e.getTotalSalary() > 5000d));
System.out.println(collect6);
}