647. 回文子串(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台)
思路:难处在于定义dp[i][j]的表示,确定了dp[i][j]代表的含义就好办了,dp[i][j]代表以下标i开始、下标j结束的字符串是否是回文字符串。那么既然这样定义,该如何用到前面已经算好了的dp数组的值呢,答案是判断dp[i+1][j-1]是否是回文串(当j-i<=1时则不必),因此遍历循环外层是倒序,内层是顺序。此外,还有一种双指针的做法也可以判断回文字串的数目,核心就是没次取一个节点或者两个节点作为子串的核心,依次向两头遍历。
int countSubstrings(string s) {
int size = s.size();
vector<vector<bool>> dp(size, vector<bool>(size, false));
int result=0;
for(int i=size-1; i>=0; i--){
for(int j=i; j<size; j++){
if(s[i]==s[j]){
if(j-i<=1){
result++;
dp[i][j]=true;
}else if(dp[i+1][j-1]){
result++;
dp[i][j]=true;
}
}
}
}
return result;
}
516. 最长回文子序列(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台)
思路:和上题的做法类似,dp数组的便利依旧是外层倒序,内层顺序。不过dp数组的含义改变为:dp[i][j]代表以下标i开始、下标j结尾的字符串的最大回文子序列的长度。因此,初始化的时候要先令所有长度为1的字符串的dp数组的值为1。遍历完dp数组,本题的结果就出来了,不需要做任何结果转换。
int longestPalindromeSubseq(string s) {
int size = s.size();
vector<vector<int>> dp(size, vector<int>(size, 0));
for(int i=0; i<size; i++) dp[i][i] = 1;
for(int i=size-1; i>=0; i--){
for(int j=i+1; j<size; j++){
if(s[i]==s[j]){
dp[i][j] = dp[i+1][j-1] + 2;
}else{
dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
}
}
}
return dp[0][size-1];
}