最少步数 NYOJ 58

9 篇文章 0 订阅
8 篇文章 0 订阅

最少步数
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
这有一个迷宫,有0~8行和0~8列:

1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,1

0表示道路,1表示墙。

现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?

(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)

输入
第一行输入一个整数n(0

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int MAXN=1e3+10;

bool vis[MAXN][MAXN];
 int map[9][9]={   //习惯开成map[MAXN][MAXN],初始化就错了,怎么找都找不出来 
 1,1,1,1,1,1,1,1,1, //不敢再乱用习惯上的代码了 应该去理解每个题的需要与要求 
 1,0,0,1,0,0,1,0,1,//写出适合他的代码才是最好的,每一点都要有思考 
 1,0,0,1,1,0,0,0,1,
 1,0,1,0,1,1,0,1,1,
 1,0,0,0,0,1,0,0,1,
 1,1,0,1,0,1,0,0,1,
 1,1,0,1,0,1,0,0,1,
 1,1,0,1,0,0,0,0,1,
 1,1,1,1,1,1,1,1,1
};

struct node{
    int x;
    int y;
    int step;
};

int dir[4][2]={
    1,0,
   -1,0,
    0,1,
    0,-1
};

int si,sj,ei,ej,t;
int bfs(int x,int y)
{
    queue<node> que;//定义初始位置信息节点 
    node spos;
    spos.x=si;
    spos.y=sj;
    spos.step=0;
    que.push(spos);//将初始位置放进队列 
    vis[spos.x][spos.y]=true;//初始化起点已走过若不初始化则有可能 
    while(!que.empty())  
    {
        node now;
        now=que.front();
        que.pop();
        if(now.x==ei&&now.y==ej)  return now.step;
        for(int i=0;i<4;++i)//如果当前位置不是终点,继续搜索 
        { 
              node go;
              go.x=now.x+dir[i][0];
              go.y=now.y+dir[i][1];

              if(!map[go.x][go.y]&&!vis[go.x][go.y])//如果没有访问过且连通 
              {
                 vis[go.x][go.y]=true;
                 go.step=now.step +1;
                 que.push(go);
              }
        }
    }
}

int main()
{
    scanf("%d",&t);
    while(t--)
    {

        scanf("%d%d%d%d",&si,&sj,&ei,&ej);
        memset(vis,false,sizeof(vis));
        int ans=bfs(si,sj);
        printf("%d\n",ans);

    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值