HPU 1029: QAQ的填充方案 【Catlan】

1029: QAQ的填充方案 [组合数学]

时间限制: 1 Sec   内存限制: 128 MB
提交: 19   解决: 6
[ 提交][ 状态][ 讨论版]

题目描述

给定 12N 1−2∗N 2N 2∗N个元素,现在有 x[1N]y[1N] x[1−N],y[1−N]两个数组,你需要把这 2N 2∗N个数(每个数必须用一次且仅用一次)填入这两个数组里面。

定义一个填充方案是合法的即:

x[i]<x[i+1]<x[i+2]<...<x[N] x[i]<x[i+1]<x[i+2]<...<x[N]

y[i]<y[i+1]<y[i+2]<...<y[N] y[i]<y[i+1]<y[i+2]<...<y[N]

x[i]<y[i]x[i+1]<y[i+1]...x[N]<y[N] x[i]<y[i],x[i+1]<y[i+1],...,x[N]<y[N]

输入

第一行输入一个整数 T T,代表有 T T组测试数据。

每组数据输入一个整数 N N,代表有 N N个位置。


注: 1<=T<=301<=N<=1000000 1<=T<=30,1<=N<=1000000

输出

对每组测试数据,输出一个整数代表合法的填充方案数。

由于结果很大,请对 (109+7) (109+7)取余。

样例输入

2
1
2

样例输出

1
2

提示

对于第二组测试数据,有 1,2,3,4 1,2,3,4 4 4个数。填数方案有:

(1) x[1]=1x[2]=2 x[1]=1,x[2]=2

    y[1]=3y[2]=4 y[1]=3,y[2]=4

满足 1<23<41<32<4 1<2,3<4,1<3,2<4

(2) 13 1,3

    24 2,4

同上。

来源


题解:

首先可以暴力DFS先打个表,找出序列的结果。

发现这是一个卡特兰序列,然后用逆元求解一下即可。

递推过程略。

时间复杂度 O(nlogn) O(n∗logn)

AC代码:

#include<cstdio>

typedef long long LL;
const LL MOD=1e9+7;

LL fac[2000111];

void GetFac(LL N,LL MOD) {
	fac[0]=1%MOD;
	for(LL i=1;i<=N;++i) fac[i]=fac[i-1]*i%MOD;  
//	for(LL i=0;i<=111;++i) printf("%lld\n",fac[i]); 
}

LL Pow_Mod(LL base,LL y,LL MOD) {
	LL ans=1;
	while(y) {
		if(y&1) ans=ans*base%MOD;
		y>>=1; base=base*base%MOD;
	} 
	return ans;
}
int main() {
	GetFac(2e6+11,MOD);
	LL T; scanf("%lld",&T);
	while(T--) {
		LL N; scanf("%lld",&N);//两个数相乘就要取余 要不就溢出了 
		LL ans=fac[2*N]*Pow_Mod((fac[N]*fac[N]%MOD)*(N+1)%MOD,MOD-2,MOD)%MOD;
		printf("%lld\n",ans);
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值