1029: QAQ的填充方案 [组合数学]
时间限制: 1 Sec 内存限制: 128 MB提交: 19 解决: 6
[ 提交][ 状态][ 讨论版]
题目描述
给定 1−2∗N 1−2∗N共 2∗N 2∗N个元素,现在有 x[1−N],y[1−N] x[1−N],y[1−N]两个数组,你需要把这 2∗N 2∗N个数(每个数必须用一次且仅用一次)填入这两个数组里面。
定义一个填充方案是合法的即:
x[i]<x[i+1]<x[i+2]<...<x[N] x[i]<x[i+1]<x[i+2]<...<x[N]
y[i]<y[i+1]<y[i+2]<...<y[N] y[i]<y[i+1]<y[i+2]<...<y[N]
x[i]<y[i],x[i+1]<y[i+1],...,x[N]<y[N] x[i]<y[i],x[i+1]<y[i+1],...,x[N]<y[N]。
输入
每组数据输入一个整数 N N,代表有 N N个位置。
注: 1<=T<=30,1<=N<=1000000 1<=T<=30,1<=N<=1000000。
输出
对每组测试数据,输出一个整数代表合法的填充方案数。
由于结果很大,请对 (109+7) (109+7)取余。
样例输入
2
1
2
样例输出
1
2
提示
对于第二组测试数据,有 1,2,3,4 1,2,3,4共 4 4个数。填数方案有:
(1) x[1]=1,x[2]=2 x[1]=1,x[2]=2
y[1]=3,y[2]=4 y[1]=3,y[2]=4
满足
1<2,3<4,1<3,2<4
1<2,3<4,1<3,2<4。
(2) 1,3 1,3
2,4 2,4
同上。
来源
题解:
首先可以暴力DFS先打个表,找出序列的结果。
发现这是一个卡特兰序列,然后用逆元求解一下即可。
递推过程略。
时间复杂度 O(n∗logn) O(n∗logn)。
AC代码:
#include<cstdio>
typedef long long LL;
const LL MOD=1e9+7;
LL fac[2000111];
void GetFac(LL N,LL MOD) {
fac[0]=1%MOD;
for(LL i=1;i<=N;++i) fac[i]=fac[i-1]*i%MOD;
// for(LL i=0;i<=111;++i) printf("%lld\n",fac[i]);
}
LL Pow_Mod(LL base,LL y,LL MOD) {
LL ans=1;
while(y) {
if(y&1) ans=ans*base%MOD;
y>>=1; base=base*base%MOD;
}
return ans;
}
int main() {
GetFac(2e6+11,MOD);
LL T; scanf("%lld",&T);
while(T--) {
LL N; scanf("%lld",&N);//两个数相乘就要取余 要不就溢出了
LL ans=fac[2*N]*Pow_Mod((fac[N]*fac[N]%MOD)*(N+1)%MOD,MOD-2,MOD)%MOD;
printf("%lld\n",ans);
}
return 0;
}