POJ 3264 Balanced Lineup【RMQ模板题】

 Balanced Lineup

题意:给出长度为N的数组和Q次查询,每次查询给出L,R,输出max(AL-AR)-min(AL-AR); N:5e4,  Q:5e5;

模板题:需注意存储时如果从0开始那么查询时L-1,R-1;


AC代码:

#include<cstdio>
#include<algorithm>
#include<cmath>

using namespace std;

const int MAXN=5e4+11;
int a[MAXN],dmin[MAXN][40],dmax[MAXN][40];

void RMQ_init(int N) {
	for(int i=0;i<N;++i) dmin[i][0]=dmax[i][0]=a[i];
	for(int j=1;(1<<j)<=N;++j) {
		for(int i=0;i+(1<<j)-1<N;++i) {
			dmin[i][j]=min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);
			dmax[i][j]=max(dmax[i][j-1],dmax[i+(1<<(j-1))][j-1]);
		}
	}
}

int RMQ(int L,int R,int cho) {
	int k=log(1.0*(R-L+1))/log(2.0);
	//while((1<<(k+1))<=R-L+1) ++k;
	if(cho) return max(dmax[L][k],dmax[R-(1<<k)+1][k]);
	return min(dmin[L][k],dmin[R-(1<<k)+1][k]);
}

int main() {
	int N,Q;
	while(~scanf("%d%d",&N,&Q)) {
		for(int i=0;i<N;++i ) scanf("%d",&a[i]);
		RMQ_init(N);
		while(Q--) {
			int L,R; scanf("%d%d",&L,&R);
			int ans=RMQ(L-1,R-1,1)-RMQ(L-1,R-1,0);
			printf("%d\n",ans);
		} 	
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值