USACO 1.6 Prime Palindromes 回文质数

题目大意


给出a, b(5 <= a , b <= 100,000,000),求a,b区间内的所有为质数的回文数。

 

样例输入&输出


sample input 

5 500

sample output

5

7

11

101

131

151

181

191

313

353

373

383

 

分析&反思


有意义的一题。关键在于回文和质数的判断。

首先我秒想到了筛质数,但有些忘记,便去复习,复习结果下一篇写。总之九位数的数组空间开不出来。

然后决定改良质数的判定,于是用遍历因数至平方根,which又复习了sqrt( )函数,结果一波时间换空间,超时,只过6个点。

然后我把判回文放在了判质数的前面,如此一想的确判回文更好判,超时,过了8个点。

于是我点开了hint1,短短几个词:Generate the palindromes and see if they are prime.

哎,超时的原因就是每个数都去判断,实际上大部分的数和这两个条件根本不沾边。

想方设法的造回文,剪枝,用dfs。dfs细节:

1. dfs的终止状态一般不是到界,而是越界,> n+1什么的不是很常见么。

2. 上一题是输出答案忘了0,这一题是往回文数里填数时忘了0。不是遍历的不要想当然的把0扔了。切记啊!

 

代码


#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;

int a, b;
//int prime[10000002], tot, v[100000002];

/*void getlist(int size) {
	memset(v, 1, sizeof(v));
	v[1] = 0;
	for(int i = 2; i <= size; i++) {
		if(v[i]) prime[++tot] = i;
		for(int j = 1; j <= tot && i*prime[j] <= size; j++) {
			v[i*prime[j]] = 0;
			if(i%prime[j] == 0) break;
		}
	}
}*/

int isprime(int x) {
	int top = (int)sqrt(x)+1;
	for(int i = 2; i <= top; i++) 
		if(x%i == 0) return 0;
	return 1;
}

/*int check(int x) {
	int len = 1, num[20];
	memset(num, 0, sizeof(num));
	
	num[1] = x;
	for(;;) {
		if(num[len] < 10) break;
		num[len+1] = num[len] / 10;
		num[len] = num[len] % 10;
		len++;
	}
	
	int s = 1;
	while(len > s) {
		if(num[len] != num[s]) return 0;
		len--;
		s++;
	}
	return 1;
}*/

int num[10], flag = 0;
int ans[1000002], cnt;
void dfs(int f, int t, int len) {
	if(flag) return;
	if(f-t < 0) {
		int x = 0;
		for(int i = len; i; i--) x = x*10 + num[i];
		if(x > b) {
			flag = 1;
			return;
		}
		if(isprime(x) && x >= a) ans[++cnt] = x;
		return;
	}
	for(int i = 0; i < 10; i++) {
		num[f] = num[t] = i;
		dfs(f-1, t+1, len);
		num[f] = num[t] = 0;
		if(flag) return;
	}
}

int main() {
	
	freopen("pprime.in", "r", stdin);
	freopen("pprime.out", "w", stdout);
	
	cin >> a >> b;
	//getlist(b+2);
	int weia = 0, aa = a;
	while(aa) {
		weia++;
		aa /= 10;
	}
	
	for(int len = weia; len < 9; len++) dfs(len, 1, len);
	
	sort(ans+1, ans+cnt+1);
	for(int i = 1; i <= cnt; i++) cout << ans[i] << endl;
	
	return 0;
}

备注


a不了的时候要耐心,看似一脸懵逼的问题,交给时间,总会迎刃而解的。加油。

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 题目描述: 给定一个整数 $N$,求出大于 $N$ 的最小的既是质数又是回文数的数。 回文数指的是正着读和倒着读都一样的数字,例如 12321 就是一个回文数。 输入格式: 输入共 1 行,包含一个整数 $N$。 输出格式: 输出共 1 行,包含一个整数,表示题目所求的数。 数据范围: $1≤N≤10^7$ 样例: 输入: 31 输出: 101 解题思路: 从 $N$ 开始遍历,判断每一个数是否既是质数又是回文数。如果找到了这样的数,直接输出即可。 判断是否为质数可以用较为简单的暴力算法,枚举 $2$ 到 $\sqrt{x}$ 之间的所有数,看是否存在约数。 判断是否为回文数可以将该数转化为字符串,然后比较正序字符串和倒序字符串是否相等即可。 注意,本题所求的数可能非常大,需要使用 long long 类型存储,并且需要使用快速幂算法来快速计算幂次。同时,因为奇数位的回文数一定不是 11 的倍数,因此可以只枚举奇数位的回文数。 ### 回答2: 题目要求找出范围在2到N(包括2和N)之间的回文质数。所谓回文质数是指既是质数又是回文数的数。质数是指除了1和自身以外没有其他因数的正整数。 首先,我们先定义两个函数:一个是用来判断一个数是否为质数的函数is_prime,另一个是用来判断一个数是否为回文数的函数is_palindrome。 is_prime函数的实现方法如下:从2到该数的平方根进行遍历,判断是否存在该数的因数,如果存在则返回False,代表不是质数,如果遍历结束都没有找到因数,则返回True,代表是质数。 is_palindrome函数的实现方法如下:将该数字转化为字符串,并判断该字符串与其翻转后的字符串是否相等,如果相等则返回True,代表是回文数,否则返回False,代表不是回文数。 接下来,我们在范围从2到N进行遍历,对每个数字都进行is_prime和is_palindrome的判断,如果都满足条件,则将该数字输出。 下面是代码实现的伪代码: ``` function is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True function is_palindrome(num): num_str = str(num) if num_str == num_str[::-1]: return True return False function prime_palindromes(N): for num in range(2, N+1): if is_prime(num) and is_palindrome(num): print(num) ``` 以上是本题的解题思路和伪代码实现,希望能对你有所帮助。 ### 回答3: 题目要求找出所有小于等于N的回文质数回文数是指正读反读都相同的数,例如121、12321都是回文数。质数是只能被1和自身整除的数,例如2、3、5、7都是质数。 首先,我们可以编写一个函数来判断一个数是否为质数。函数的输入是一个正整数n,判断n是否能被小于n的所有数整除,如果能则返回False,否则返回True。 接下来,我们可以编写一个函数来判断一个数是否为回文数。函数的输入是一个正整数n,将n转换成字符串并反转,然后与原字符串进行比较,如果相同则返回True,否则返回False。 在主函数中,我们可以遍历1到N之间的所有数,对于每个数,首先判断是否为回文数,如果不是则跳过;然后判断是否为质数,如果是则输出该数。 最后,我们可以将上述步骤封装成一个循环,将N从2逐渐增加,直到N超过题目要求的上限。 以下是代码实现: def is_prime(n): for i in range(2, n): if n % i == 0: return False return True def is_palindrome(n): s = str(n) if s == s[::-1]: return True return False N = int(input()) for n in range(2, N + 1): if is_palindrome(n) and is_prime(n): print(n) 希望能够帮助你解答问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值