我的2020推免之路:清叉、TBSI、贵系、中山、国防科大、自动化所

一.前言

人生就是不断解开心结,又系上心结的过程

因为今年的情况比较特殊,所以个人感觉对后辈的参考意义不是很大,更多的是对自己这段旅途的一个记录,请大家在阅读时有选择的提取信息。

二.个人情况

本科学校:华北某211
前五、六学期学分绩排名:1/119
前六学期综合排名:1/119
专业:计算机科学与技术
CET-6:500+
竞赛科研奖项:国家奖学金、国家级大创、建模国赛美赛小奖、2篇论文(智能交通、边缘计算相关,非顶会顶刊)

入营:清华大学交叉信息学院(清叉)、清华-伯克利深圳学院(TBSI)、清华大学计算机系(贵系)、中山大学数据科学与计算机学院、国防科技大学智能科学学院、中国科学院自动化研究所

offer:TBSI的welcome letter(这个不能算是offer,相当于是优惠条件,可提前与老师交流,参与组会,9月直接进面试)、中山、国防科大(面试结果出来后确定不去,提前说明放弃)、自动化所

最终去向:中科院自动化研究所(学硕)

PS:预推免没有再尝试主要有两个原因:由于夏令营时和自动化所的老师签订了双选协议,是自己喜欢的方向并且是学硕;目测清华贵系自己感兴趣的实验室已经没坑。

三.夏令营

清华大学交叉信息学院(6.13~6.14)

在这里插入图片描述
1.概述简介
清华大学交叉信息学院官网
在我的认知里,清华大学交叉信息学院(本科姚班)是国内天才们的聚集地;叉院的计算机在国内也是顶级的,又因为招生规模小,入营难度一直都是相当大的;也是我自己最没有想到能够入营的一个,是真的“抱着试一试的心态”,得知入营的时候整个人都恍惚了。

但是既然入营了,就要奋力一搏。叉院没有机试,今年疫情原因也没有笔试(不过计算机方向貌似一直没有笔试)。叉院给我的感觉就是导师的权利很大,如果导师愿意要你,那么基本是稳了。(但是导师不会轻易许下承诺,往往会有漫长的考核)

2.流程
宣讲会:叉院的各个老师介绍自己的研究方向、科研实力以及理想学生的画像。因此这是一个很好的了解导师的机会,可以物色自己感兴趣的老师。另外,官方说明此次交流会是全英文的,但是实际上部分老师为了让学生能够更好地理解研究内容,使用了中文进行讲解。就算是英文不太好的同学(比如我自己~~),听不太懂英文介绍,但是看着PPT,也能理解个八九不离十。

面试:叉院今年没有笔试和机试,面试是各个导师一对一进行的。由于叉院在申请报名的时候就让填写了意向导师,因此,入营后会给营员分配当时所填报的意向导师的面试,营员面试完自己当初所填报的导师后,可以再联系其他感兴趣的导师,如果对方愿意给予面试的机会,那么就可以再次进行面试。面试在一天半内进行完,所以大部分导师的面试时间是重叠的,而且一个导师往往要面试很多个学生,因此导师很少有时间面试入营后再联系的学生。面试进行完之后,导师会根据面试情况给自己觉得“感兴趣”的同学发邮件进行后续考核(这才是真正的开始······)

我填报系统时的第一志愿是yy老师,第二志愿是fzx老师;但是入营后给我分配的是yy老师和lyz老师的面试(可能是报fzx老师的人太多,被“调剂”了)。另外,叉院的面试也是要求全英文的,每个人约15min,先是5min的自我介绍(可使用PPT),然后10min左右老师根据自我介绍提问。
面yy老师时:老师主要在问我那篇关于智能交通的论文,问了主要的创新点和算法的问题,然后老师说他之前也做过类似的(此时内心既庆幸又担心),没问一些数学、计算机、算法之类的问题。
面试lyz老师时:老师主要问我那篇关于边缘计算的论文,也是创新点和算法的问题。但是中间有一些小插曲,本来我是用英文在和老师交流,在我用英文介绍完我的论文的创新点后,老师说:我们还是用中文进行交流吧…(我大概明白什么意思了=-=)。之后老师又问我有没有学习过电力系统相关的课程,我说没具体的学习过;然后老师说他现在在做和电相关的,不是很需要纯计算机背景的学生,然后就面试结束了。

3.感受&建议
总体感觉叉院不算特别重视学生的过往背景,比较看重英语、科研经历(与老师的锲合度),如果你有很好的科研成果,和老师交谈过后老师觉得很有科研潜力,又有很好的英语表达能力,很有可能被进一步考察。但是据说叉院的导师考察要持续一个月左右,时间成本还是比较大的。但是如果有实力有自信,与老师谈得来,还是很值得一试的。

最后笔者没有等来两位老师的考察邮件,看来两位老师对我并不感兴趣,于是我就向老师发邮件表示了感谢,结束了这一段叉院之旅。

清华-伯克利深圳学院(7.2~7.9)

1.概述简介
清华-伯克利深圳学院官网
清华-伯克利深圳学院(以下简称TBSI)是由清华大学与加州大学伯克利分校联合建立的研究院。前两年与清华大学深圳研究院合并,成为了现在的清华大学深圳国际研究生院,所以可以把TBSI看作清华的

### TBSI网络技术介绍 #### 背景与动机 为了应对跨模态视觉追踪中的挑战,特别是RGB和热红外(TIR)图像之间的差异,TBSI(Template Bridging Search Interaction)模块被设计出来。传统方法难以有效处理不同模态间的数据融合问题,而TBSI旨在通过引入模板作为桥梁,促进RGB和TIR搜索区域之间更深层次的交互。 #### 关键组件和技术细节 TBSI的核心在于其独特的机制——即利用预定义的模板来捕捉并传递目标及其周围环境的关键特征[^2]。具体来说: - **模板作用**:模板不仅用于初始化模型,还会在整个跟踪过程中动态更新,融入更多关于目标物体以及背景场景的信息。 - **跨模态交互**:通过对齐后的RGB和TIR输入进行联合编码,使得两种不同类型传感器获取的画面能够在高层次语义层面相互补充和支持。 - **ViT集成**:此模块嵌入到了Vision Transformer (ViT) 主干网路内部,从而实现了端到端的学习框架下的统一特征表示学习、高效的目标检测及定位功能增强。 ```python class TBSIModule(nn.Module): def __init__(self, config): super().__init__() self.template_encoder = TemplateEncoder(config) self.rgb_tir_fusion_layer = FusionLayer() def forward(self, rgb_input, tir_input, template): updated_template = self.template_encoder(template, rgb_input, tir_input) fused_features = self.rgb_tir_fusion_layer(rgb_input, tir_input, updated_template) return fused_features ``` 这种架构允许系统更好地理解复杂的真实世界条件,并提高了在多种应用场景下鲁棒性和准确性表现。 #### 实验验证与效果评估 经测试,在多个公开可用的标准RGB-T视频序列数据集中应用了带有TBSI改进措施的新算法后,相较于其他先进方案展现出了显著优势。特别是在低光照条件下或者当目标外观发生较大变化时,新系统的稳定性和精确度都有明显提升。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值