一、题目
给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。
示例如下:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
二、思路
这个题目有DP和贪心两种解法,由于采用贪心解法更方便所以先讲贪心的解法。
思路一:贪心: 这个问题的实质在于每一个位置的跳跃距离最终是否能覆盖到终点,每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解: 每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
时间复杂度: O(n)
思路二:动态规划
按照动态规划五部曲进行分析:
-
确定dp数组的含义
dp[i]:为bool类型,表示的是能否从位置i到达位置n-1。 -
确定递推公式
这里我们还用一个变量furtherjump来表示当前位置能够到达的最远距离。我们从数组的倒数第二个位置开始向左遍历数组,更新 dp 数组的值。对于每个位置 i,我们计算从当前位置能够到达的最远位置 furthestJump,然后检查从 i+1 到 furthestJump 之间的位置是否有能够跳到最后一个位置的情况,如果有,则将 dp[i] 设为 true。最终返回 dp[0] 的结果。
确定遍历顺序 -
dp数组初始化
dp[n-1]=true,因为最后一个位置肯定可以跳到本身位置上。然后其它dp[i]初始化为false。 -
确定遍历顺序
从后往前进行遍历
三、C++代码
思路一代码:
#include<bits/stdc++.h>
using namespace std;
#define maxn 10010
int nums[maxn];
bool jump(int nums[],int n){
int cover=0;
if(n==1){
return true;
}
for(int i=0;i<=cover;i++){
cover=max(i+nums[i],cover);
if(cover>=n-1){
return true;
}
}
return false;
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>nums[i];
}
if(jump(nums,n)){
cout<<"true";
}else{
cout<<"false";
}
}
思路二代码:
#include<bits/stdc++.h>
using namespace std;
#define maxn 10010
bool dp[maxn];
int nums[maxn];
bool jump(int nums[],int n){
//dp数组初始化
for(int i=0;i<n;i++){
dp[i]=false;
}
dp[n-1]=true; //最后一个位置可以跳到自己
//确定递推公式
for(int i=n-2;i>=0;--i){
int furtherjump=min(i+nums[i],n-1); //当前位置能够到达的最远位置
for(int j=i+1;j<=furtherjump;j++){
if(dp[j]){ //如果从j位置可以跳到最后一个位置
dp[i]=true; //则从i位置也可以跳到最后一个位置
break; //不需要再检查后面的位置
}
}
}
return dp[0];
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>nums[i];
}
if(jump(nums,n)){
cout<<"true";
}else{
cout<<"false";
}
}